Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greenhouse gases unbalanced

25.03.2015

How human intervention changes wetlands

The conversion of arctic and boreal wetlands into agricultural land would result in an additional cumulative radiative forcing of about 0,1 mJ per square meter for the next 100 years. The conversion of temperate wetlands into agricultural land would even result in a cumulative radiative forcing of 0,15 mJ per square meter. Converting forested wetlands into managed forests also contributes to increased warming, albeit much less than the conversion of non-forested wetlands.


Automatic flux measurement chambers and an eddy covariance system to determine turbulent exchange fluxes of heat, water vapor, CO2, and CH4 between a re-wetted peatland and the atmosphere at Zarnekow, NE Germany (photo: Daniela Franz, GFZ)

Natural wetlands usually emit methane and sequester carbon dioxide. Anthropogenic interventions, in particular the conversion of wetlands for agriculture, result in a significant increase in CO2 emissions, which overcompensate potential decreases in methane emission.

A large international research team now calculated that the conversion of arctic and boreal wetlands into agricultural land would result in an additional cumulative radiative forcing of about 0,1 mJ per square meter for the next 100 years. The conversion of temperate wetlands into agricultural land would even result in a cumulative radiative forcing of 0,15 mJ per square meter. Converting forested wetlands into managed forests also contributes to increased warming, albeit much less than the conversion of non-forested wetlands.

Wetlands are unique ecosystems, which - under natural conditions - are the single largest natural source of the greenhouse gas methane (CH4) but at the same time an important sink for the greenhouse gas carbon dioxide (CO2). The climate footprint of these ecosystems depends on the balance of these two important greenhouse gases. Despite methane being 28 times more potent as a greenhouse gas than carbon dioxide (in a 100 year time span), the conversion of natural wetlands into agricultural or forested ecosystems and its associated decrease in methane emissions still leads to an overall warming effect.

„The human impact on wetlands, such as drainage, results in a shift of the climate footprint of that wetland” says Torsten Sachs at the GFZ German Research Centre for Geosciences, co-author of the study. „The overall balance of these two differently active greenhouse gases and thus the climate footprint of a wetland over different time spans depend on the relative sign and magnitude of these ecosystem-atmosphere fluxes."

The global impact is still rather uncertain due to large temporal and spatial variability and a lack of data on the complex interactions between environmental drivers such as temperatures of land, water, and sediment, water levels, vegetation, nutrient availability, among others, and the additional anthropogenic impacts such as land use change.

To calculate the net ecosystem carbon balance of wetland ecosystems, the more than 40 member research team synthesized data from almost 30 differently affected arctic, boreal, and temperate study sites across the globe. Simultaneous measurements of the ecosystem-atmosphere CO2 and CH4 fluxes in continental North America, Greenland, Europe, and Russia were used for analyses and modeling.

For sites with a full annual dataset of CO2 and CH4 fluxes, natural and converted sites were paired in all possible combinations within similar ecosystem types. „To determine the climate impact of the conversion, we used the difference of the net ecosystem carbon balance between the site pairs as series of consecutive annual mass pulses and integrated their effect on tropospheric greenhouse gas concentrations” explains GFZ researcher Sachs. The different radiative efficiencies and atmospheric residence times of the greenhouse gases were accounted for when the radiative forcing was calculated for the period from 2000 – 2100.

Ana Maria Roxana Petrescu et. al.: “Uncertain climate footprint of wetlands under human pressure” Proceedings of the National Academy of Science, PNAS Early Edition, 24.03. 2015,

http://www.pnas.org/cgi/doi/10.1073/pnas.1416267112

Franz Ossing | GFZ Potsdam
Further information:
http://www.gfz-potsdam.de/

More articles from Ecology, The Environment and Conservation:

nachricht Foxes in the city: citizen science helps researchers to study urban wildlife
14.12.2018 | Veterinärmedizinische Universität Wien

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>