Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discoveries show biological formation of oxygen in soils

21.01.2014
In the 1930s, the ability of green plants to form oxygen through oxidation of water–photosynthesis was discovered.

Since then, no other large-scale biological formation of oxygen has been found, until now. New research results show that down in the dark depths of the soil, a previously unknown biochemical process is under way, in which oxygen is formed and carbon dioxide is reduced to organic material.

“The results show that there is a highly unexpected biochemical process going on in forest-, agricultural- and grassland soils. This is knowledge that should be possible to apply in our continued work on reducing the increase of carbon dioxide in the atmosphere and countering the greenhouse effect,” says Professor Siegfried Fleischer of Halmstad University, who initiated the study “Dark Oxidation of Water in Soils”, which was just recently published in Tellus B: Chemical and Physical Meteorology.

The discovery is a consequence of a research track that, from the beginning, was not in line with current views of the soil ecosystem. Professor Fleischer stumbled across the phenomenon when he studied nitrification, an oxygen-consuming process in the ground. The consumption of oxygen was expected to increase when ammonia was supplied, but analyses in the laboratory rather showed that more oxygen was being produced. When the experiment was repeated, this “anomaly” showed up again and again. This new, unequivocal pattern in the results indicated the need for a new concept. Professor Fleischer took up the challenge.

He made the assumption that the bewildering result could be explained if water, which is present everywhere, contributes to reducing carbon dioxide to organic material down in the dark depths of the soil. The fact that this process takes place without sunlight, as is the case with plants, was however something completely outside current knowledge and accepted views. Professor Fleischer, however, went further, with this as his working hypothesis.

One way of getting nearer the problem was working with isotope-labelled water (H218O), thus revealing if the oxygen formed really did come from water. A few years ago, therefore, Professor Fleischer contacted researchers at the Division of Nuclear Chemistry at Chalmers University, where the right equipment could be found, and later also with a specialist at the energy company Vattenfall. The research group was able to show that the oxygen formed came from water in the soil, and that the water was oxidised biologically.

An international assessment of the scientific research, carried out at Halmstad University in 2013, called the results “potentially ground-breaking”.

Professor Fleischer conducted the five-year project in collaboration with Lovisa Bauhn and Arvid Ödegaard-Jensen of the Division of Nuclear Chemistry at Chalmers University, and Patrik Fors at Vattenfall.

For more information, contact Professor Siegfried Fleischer, tel. 070-655 13 63, 035-16 77 66; e-mail: siegfried.fleischer@hh.se.

Pressofficer Lena Lundén, +46-73 241 74 43, lena.lunden@hh.se

Weitere Informationen:

http://www.tellusb.net/index.php/tellusb/article/view/20490 Link to the report “Dark Oxidation of Water in Soils”

Lena Lundén | idw
Further information:
http://www.tellusb.net/index.php/tellusb/article/view/20490
http://www.vr.se

More articles from Ecology, The Environment and Conservation:

nachricht Despite government claims, orangutan populations have not increased. Call for better monitoring
06.11.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Increasing frequency of ocean storms could alter kelp forest ecosystems
30.10.2018 | University of Virginia

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>