Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Developing a New Laser to Detect Methane Leaks

01.07.2013
University of Adelaide researchers are developing a new type of laser system that will monitor methane, the main component of natural gas, levels across large areas. This will provide a useful tool for monitoring greenhouse gas emissions.

The system has the potential to detect methane leaks from long-distance underground gas pipelines and gas fields, including coal seam gas extraction operations, and to measure methane emissions from animal production.

The researchers, based in the University’s Institute for Photonics and Advanced Sensing, have conducted a preliminary study and are developing the laser system for further testing.

“We hope to accurately measure methane concentrations up to a distance of 5km,” says project leader Dr David Ottaway, Senior Lecturer in the School of Chemistry and Physics.

“This will give us an ability to map methane over an area as large as 25 square kilometres in a very short time. At the moment current technology only allows detection at a single point source as it blows past the detector.”

The system uses laser-based remote sensing technology called DIAL. Laser pulses are emitted with alternate frequencies, one of which is absorbed by the methane. The methane concentration is measured by observing the difference between the amounts of light scattered back to the detector. The laser system will then be swept through a circle to determine the methane concentration over a wide area.

To produce a powerful cost-effective laser system, the researchers are developing an erbium-YAG laser source. These lasers have the advantage of emitting light that cannot be seen by humans and is not hazardous to the human eye ‒ important when the lasers are to be used in the environment and not confined to a regulated laboratory.

“We believe we are the only group working on an erbium-YAG DIAL system and we are very excited about the possibilities that this system could offer for reducing greenhouse gas emissions in a cost-effective manner,” Dr Ottaway says.

“Methane is a very important gas in terms of climate change. It absorbs radiation, which warms the atmosphere, at a rate more than 20 times larger than that of carbon dioxide. This technology has great potential to help reduce our methane emissions from gas pipeline leaks or from coal seam gas operations, and may be important for monitoring agricultural emissions over time.”

Media Contact:
Dr David Ottaway
Senior Lecturer, School of Chemistry and Physics
Institute for Photonics and Advanced Sensing
The University of Adelaide
Mobile: +61 0430 325 099
david.ottaway@adelaide.edu.au
Robyn Mills
Media Officer
The University of Adelaide
Phone: +61 8 8313 6341
Mobile: +61 410 689 084
robyn.mills@adelaide.edu.au

Dr David Ottaway | Newswise
Further information:
http://www.adelaide.edu.au

More articles from Ecology, The Environment and Conservation:

nachricht Despite government claims, orangutan populations have not increased. Call for better monitoring
06.11.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Increasing frequency of ocean storms could alter kelp forest ecosystems
30.10.2018 | University of Virginia

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>