Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ant Study Could Help Future Robot Teams Work Underground

21.05.2013
Future teams of subterranean search and rescue robots may owe their success to the lowly fire ant, a much-despised insect whose painful bites and extensive networks of underground tunnels are all-too-familiar to people living in the southern United States.

By studying fire ants in the laboratory using video tracking equipment and X-ray computed tomography, researchers have uncovered fundamental principles of locomotion that robot teams could one day use to travel quickly and easily through underground tunnels. Among the principles is building tunnel environments that assist in moving around by limiting slips and falls, and by reducing the need for complex neural processing.

Among the study’s surprises was the first observation that ants in confined spaces use their antennae for locomotion as well as for sensing the environment.

“Our hypothesis is that the ants are creating their environment in just the right way to allow them to move up and down rapidly with a minimal amount of neural control,” said Dan Goldman, an associate professor in the School of Physics at the Georgia Institute of Technology, and one of the paper’s co-authors. “The environment allows the ants to make missteps and not suffer for them. These ants can teach us some remarkably effective tricks for maneuvering in subterranean environments.”

The research was scheduled to be reported May 20 in the early online edition of the journal Proceedings of the National Academy of Sciences. The work was sponsored by the National Science Foundation’s Physics of Living Systems program.

In a series of studies carried out by graduate research assistant Nick Gravish, groups of fire ants (Solenopsis invicta) were placed into tubes of soil and allowed to dig tunnels for 20 hours. To simulate a range of environmental conditions, Gravish and postdoctoral fellow Daria Monaenkova varied the size of the soil particles from 50 microns on up to 600 microns, and also altered the moisture content from 1 to 20 percent.

While the particle size and moisture content did produce changes in the volume of tunnels produced and the depth that the ants dug, the diameters of the tunnels remained constant – and comparable to the length of the creatures’ own bodies: about 3.5 millimeters.

“Independent of whether the soil particles were as large as the animals’ heads or whether they were fine powder, or whether the soil was damp or contained very little moisture, the tunnel size was always the same within a tight range,” said Goldman. “The size of the tunnels appears to be a design principle used by the ants, something that they were controlling for.”

Gravish believes such a scaling effect allows the ants to make best use of their antennae, limbs and body to rapidly ascend and descend in the tunnels by interacting with the walls and limiting the range of possible missteps.

“In these subterranean environments where their leg motions are certainly hindered, we see that the speeds at which these ants can run are the same,” he said. “The tunnel size seems to have little, if any, effect on locomotion as defined by speed.”

The researchers used X-ray computed tomography to study tunnels the ants built in the test chambers, gathering 168 observations. They also used video tracking equipment to collect data on ants moving through tunnels made between two clear plates – much like “ant farms” sold for children – and through a maze of glass tubes of differing diameters.

The maze was mounted on an air piston which could periodically be fired, dropping the maze with a force of as much as 27 times that of gravity. The sudden movement caused about half of the ants in the tubes to lose their footing and begin to fall. That led to one of the study’s most surprising findings: the creatures used their antennae to help grab onto the tube walls as they fell.

“A lot of us who have studied social insects for a long time have never seen antennae used in that way,” said Michael Goodisman, a professor in the Georgia Tech School of Biology and one of the paper’s other co-authors. “It’s incredible that they catch themselves with their antennae. This is an adaptive behavior that we never would have expected.”

By analyzing ants falling in the glass tubes, the researchers determined that the tube diameter played a key role in whether the animals could arrest their fall.

In future studies, the researchers plan to explore how the ants excavate their tunnel networks, which involves moving massive amounts of soil. That soil is the source of the large mounds for which fire ants are known.

While the research focused on understanding the principles behind how ants move in confined spaces, the results could have implications for future teams of small robots.

“The problems that the ants face are the same kinds of problems that a digging robot working in a confined space would potentially face – the need for rapid movement, stability and safety – all with limited sensing and brain power,” said Goodisman. “If we want to build machines that dig, we can build in controls like these ants have.”

Why use fire ants for studying underground locomotion?

“These animals dig virtually non-stop, and they are good, repeatable study subjects,” Goodisman explained. “And they are very convenient for us to study. We can go outside the laboratory door and collect them virtually anywhere.”

The research described here has been sponsored by the National Science Foundation (NSF) under grant POLS 095765, and by the Burroughs Wellcome Fund. The findings and conclusions are those of the authors and do not necessarily represent the official views of the NSF.

CITATION: Nick Gravish, et al., “Climbing, falling and jamming during ant locomotion in confined environments,” (Proceedings of the National Academy of Sciences, 2013).

Research News
Georgia Institute of Technology
177 North Avenue
Atlanta, Georgia 30332-0181
Media Relations
Contact: John Toon
(404-894-6986)(jtoon@gatech.edu)
Writer: John Toon

John Toon | Newswise
Further information:
http://www.gatech.edu

More articles from Ecology, The Environment and Conservation:

nachricht Air pollution leads to cardiovascular diseases
21.08.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>