Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Air pollution leads to cardiovascular diseases

21.08.2018

Air pollution, and fine dust in particular, is responsible for more than four million deaths each year. Almost 60 per cent of deaths occur as a result of cardiovascular diseases. Scientists around Univ.-Prof. Dr. Thomas Münzel, Director of Cardiology I, Department of Cardiology of the University Medical Center Mainz, reviewed the mechanisms responsible for vascular damage from air pollution together with scientists from the UK and the USA. The findings have been published in the latest issue of the world's most recognized cardiology journal, the European Heart Journal: https://bit.ly/2OICxkN.

The large percentage of deaths from cardiovascular disease has prompted an international group of experts from Germany, England and the USA to analyze the negative effects of air pollution on vascular function in a review article.


Finedust from industry, road and air traffic and agriculture pollutes the air and leads to cardiovascular diseases.

Peter Pulkovsky (University Medical Center Mainz)

Key research questions were which components of air pollution (particulate matter, ozone, nitrogen dioxide, carbon monoxide and sulfur dioxide) are particularly damaging to the cardiovascular system and by what mechanisms the vessels are damaged.

"This report in the latest issue of the European Heart Journal is another important contribution from our Working Group on Environment and Cardiovascular Disease. In summary, it can be said that, in relation to the vascular damaging effect of air pollution, particulate matter plays a prominent role", comments Professor Münzel. "Especially the ultrafine dust makes us very worried.

These particles have the size of a virus. When the ultrafine matter is inhaled, it immediately enters the bloodstream through the lungs, is taken up by the vessels, and causes local inflammation. This ultimately causes more atherosclerosis (vascular calcification) and thus leads to more cardiovascular diseases such as myocardial infarction, acute myocardial infarction, heart failure but also cardiac arrhythmias.

Of particular interest is the fact that with regard to the much-discussed diesel exhaust emissions, particulate matter and not nitrogen dioxide (NO2), both of which are produced by burning diesel fuel, have a negative effect on vascular function", Münzel continues.

Other participants in the expert group include the world-renowned particulate matter researcher Sanjay Rajagopalan of the Cleveland Clinic, the vascular researcher and cardiologist John Deanfield of the Institute for Cardiovascular Science in London, Univ.- Prof. Dr. Andreas Daiber, Head of Molecular Cardiology of the Mainz University Medical Center and Prof. Dr. Jos Lelieveld from the Max-Planck-Institute for Chemistry (MPIC) in Mainz.

Professor Lelieveld comments: "The fine dust particles are chemically formed mainly in the atmosphere from emissions from traffic, industry and agriculture. In order to achieve low, harmless concentrations, emissions from all these sources need to be reduced.”

"In the future, we will work intensively with the Max-Planck-Institute for Chemistry to investigate the causes of cardiovascular disease caused by air pollution, especially in combination with (flight) noise," adds Münzel.

Caption: Finedust from industry, road and air traffic and agriculture pollutes the air and leads to cardiovascular diseases.
Use of the photo free of charge with indication of the picture Source: Peter Pulkovsky (University Medical Center Mainz)

Contact
Univ.-Prof. Dr. Thomas Münzel
Department of Cardiology
University Medical Center Mainz
phone 06131 17-5737
E-Mail: tmuenzel@uni-mainz.de

presscontact
Oliver Kreft, Corporate Communications University Medical Center Mainz, Phone 06131 17-7424, Fax 06131 17-3496, E-Mail: pr@unimedizin-mainz.de

About the university medicine of the Johannes Gutenberg University Mainz
The university medical center of the Johannes Gutenberg University Mainz is the only medical institution of the supra-maximum supply in Rhineland-Palatinate and an internationally recognized Science location. It comprises more than 60 clinics, institutes and departments working interdisciplinary. Highly specialized patient care, research and teaching form an inseparable unit in the university medical center Mainz. Around 3,400 students of medicine and dentistry are trained in Mainz. With approximately 7,800 employees, university medicine is also one of the largest employers in the region and an important driver of growth and innovation. More information on the Internet at www.unimedizin-mainz.de

Originalpublikation:

European Heart Journal: https://bit.ly/2OICxkN

Oliver Kreft M.A. | idw - Informationsdienst Wissenschaft

More articles from Ecology, The Environment and Conservation:

nachricht New mathematical model can help save endangered species
14.01.2019 | University of Southern Denmark

nachricht Foxes in the city: citizen science helps researchers to study urban wildlife
14.12.2018 | Veterinärmedizinische Universität Wien

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Scientists discover new 'architecture' in corn

21.01.2019 | Life Sciences

Broadband achromatic metalens focuses light regardless of polarization

21.01.2019 | Physics and Astronomy

Nuclear actin filaments determine T helper cell function

21.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>