Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research on clean diesel engine technology: Reduce nitrogen oxide emissions and consumption

07.10.2015

The developers of modern advanced diesel engine technologies face a significant tradeoff when it comes to reducing both greenhouse gas and air emissions: Many measures which reduce nitrogen oxide emissions lead to a significant increase in fuel consumption. At the Autumn Meeting of the Research Association for Combustion Engines (FVV) in Würzburg scientists presented new approaches to reconcile both objectives.

To further improve the overall emissions characteristic of a diesel engine it is not sufficient to ensure the perfect functioning of the emission control system only. The utmost goal of engine developers is to even reduce raw emissions in the engine.

In addition to design measures, the engine control system thereby plays a crucial role: Different variable systems need to be aligned so that the emission limit values set by the legislator are met by the engine while consuming as little fuel as possible. Three of the most important interdependant calibration factors in a typical passenger car diesel engine are the injection time, the amount of exhaust gas recirculated into the cylinder and the air flow within the cylinder which can be influenced, for example, through connecting or disconnecting an inlet channel.

Scientists at ETH Zurich reported on a FVV research project proposing an optimised feedback emissions control system for diesel engines

The new technique is to calculate the combustion process in the engine by means of the so-called “heat curve” and to control the engine based on the results of this calculation. The emission control system of modern advanced diesel engines relies on the feedback of physical emission sensors, for instance for determining the NOx content in the exhaust gas.

"Even though our new calculation model could do perfectly without such physical sensors, we do not want to replace but supplement them by a virtual sensor network", explained Professor Dr Konstantinos Boulouchos, ETHZ Institute for Energy Technology.

Together with his colleagues from the Institute for Dynamic Systems and Control (IDSC), his research team validated the calcualtion results at the test bench: The emissions control system based on feedback via the virtual sensors delivered similar high quality results as were achieved by using an heuristic control strategy. This also includes dynamic test cycles as the WLTC (World Light-Duty Cycle Test), the introduction of which is currently under discussion.

An optimised high-performance engine control system may in the future also solve another problem of modern diesel engines: The combustion process is very dynamic – thus enabling a vehicle to react instantly when the driver steps on the accelerator pedal. Physical sensors detecting the raw emissions always respond with a delay of up to two seconds on the change in the engine operating conditions. Add to this the inertia of the exhaust gas aftertreatment systems. This leads for very short periods to increased emissions. “We are confident that we can halve these latency periods with modern control methods" said Boulouchos.

Japan and Europe researching together

Not only Europe but also Japan focuses its research activities on how the emissions of the diesel engine can be further reduced. Professor Dr Jin Kusaka from Waseda University in Tokyo presented to the auditorium the research priorities of the Japan Research Association of Automotive Internal Combustion Engines (AICE). AICE, too, is looking for ways to control the regeneration of the particle filter more accurately.

Since for each cleaning operation, additional fuel is injected, an exact knowledge of the actual load status over the life of the vehicle may result in significant fuel savings. For both oxidation as well as for SCR catalysts different concepts are examined that work at lower temperatures. This is important to reduce cold start emissions which are always increased. Another approach is to reduce the deposits caused by the exhaust gas recirculation in the engine. This would allow to permanently operate at higher exhaust gas recirculation rates, and the resulting drop in temperature would lead to lower NOx formation.

The AICE Research Association, founded in 2014 by the Japanese vehicle manufacturers, is a FVV partner organisation. Dietmar Goericke, Managing Director of the German Research Association for Combustion Engines (FVV) concluded:

"The fact that we in Europe as well as our partners in Japan continue our intense research activities on the diesel engine, shows the potential that lies in this combustion principle. The diesel engine is the most climate-friendly drive system designed for mobile applications. By means of further research efforts it will be possible cutting emissions even further even in real driving conditions."

Weitere Informationen:

http://www.fvv-net.de/en/home/home.html

Petra Tutsch | idw - Informationsdienst Wissenschaft

More articles from Machine Engineering:

nachricht One third less consumption: Industry & research work together on fuel-efficient SI engines
04.03.2019 | Forschungsvereinigung Verbrennungskraftmaschinen e.V.

nachricht Large bearing test bench starts continuous operation
28.02.2019 | Fraunhofer-Institut für Windenergiesysteme IWES

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Researchers measure near-perfect performance in low-cost semiconductors

18.03.2019 | Power and Electrical Engineering

Nanocrystal 'factory' could revolutionize quantum dot manufacturing

18.03.2019 | Materials Sciences

Long-distance quantum information exchange -- success at the nanoscale

18.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>