Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The measuring machine element: Shaft coupling with integrated torque measurement

16.04.2013
The torque-measuring shaft coupling ROBA®-DSM is based on the tried-and-tested backlash-free shaft coupling ROBA®-DS.

This torque measurement coupling can be used in many different applications, from test stand construction to serial machines, right up to condition monitoring. The system allows easy condition monitoring of machines and systems. Using the data collected by the coupling, machines can be optimally used to capacity.


The torque-measuring shaft coupling ROBA®-DSM is based on the backlash-free and robust shaft coupling ROBA®-DS.

The measurement of rotating parts requires the transmission of energy onto the rotating part and the transmission of data from the rotating part. Many different systems are available for this purpose. In the past, energy and data were mainly transmitted inductively. However, this principle has several disadvantages in comparison to the data transmission of the new ROBA®-DSM.

A big disadvantage of the inductive systems is that data can only be transmitted over short distances. Therefore, they work mainly using “enclosing” stators, which are also partly bearing-supported. The enclosure makes both installation and replacement far more complex. Furthermore, the installation must be carried out very precisely, as the distances are very short. Another disadvantage is the low tolerances in case of vibrations and shaft run-out.

Bearing-supported systems also make a torque support mandatory. Here, it is also important to observe the installation position, so that the bearing friction torques are not included in the measurements. Systems, which are not bearing-supported, require an installation aid in order to centre the rotor and the stator.

The ROBA®-DSM does not require an enclosure and therefore only needs a small installation space. The stator can easily be mounted in any position on the circumference. When adjusting the stator, large tolerances are permitted in all directions. Potential distances of up to 5 mm are substantially larger than on enclosing systems.

Another major disadvantage of the inductive systems is the usually low transmission bandwidth on analogue versions or the low data rate on digital variants. In most cases, such systems are specified up to 1 kHz. Due to the transmission of energy and measurement data via a carrier, these systems require a complex separation of signals.

The new torque-measuring ROBA®-DSM makes use of two completely separate paths for the transmission of energy to the rotor and the transmission of data to the recipient. Due to the high bandwidth of up to 3.5kHz, it can even record fast, dynamic processes reliably. The preparation of the data on the rotor permits optimum amplification and offset compensation. On the rotor there is a programmable amplifier, which is programmed via the radio interface. In this way, the customer can undertake offset compensation on the rotor even after installation. In addition, the user can adjust the address encoding and radio channel with the aid of software.

Another advantage is the use of an encoded radio system in the 2.4GHz ISM band. No authorisation is required for operation within the EU due to a general approval. The system can also be deployed in other markets, but additional approvals are required for the purpose. The system uses up to 80 channels. This means that the operation of several couplings in the same environment is no problem. The data transmission is encoded with an address so that only the appropriate recipient is able to detect and evaluate the signal.

The radio connection function can be checked on the receiver via a simple display. Because the data transmission is bi-directional, and each package is acknowledged, the quality of the radio connection can be monitored. The receiver reports any malfunctions in the radio connection or missing data from the transmitter. Due to the high sampling rate and the fast radio connection, the ROBA®-DSM achieves very good values for Jitter (max. +/-68µs) and Delay (typ. 2ms), which usually are substantially higher on digital systems.

Like industrial standard systems, the ROBA®-DSM supplies an output signal of +/-10V for the right/left torque, which can be used as the input signal for a PLC. However, because more and more control systems are PC-based, the direct collection of digital data is an advantage. The new system ROBA®-DSM provides a USB interface, via which the digital measurement data can be read in on any PC or laptop using a standard USB interface. No additional hardware is required for the recording of measurement data. Therefore the operator can quickly obtain an overview over the current performance data. In addition, records can easily be made, even over extended periods of time. The evaluation of the data can then take place offline using appropriate programs such as DIADEM or also EXCEL, and other tabular calculation programs. In addition, online evaluation is possible, whereby the data are read in directly, for example using LABVIEW, and processed in real time.

Chr. Mayr GmbH + Co KG, Eichenstraße 1, 87665 Mauerstetten
Tel.: 08341/8040, Fax: 08341/804-421
E-Mail: info@mayr.com, www.mayr.com
Please send a copy to:
Hermann Bestle, Advertising Manager
Tel. 08341/804-232, Fax 08341/804-49232
Email: hermann.bestle@mayr.de

Hermann Bestle | Chr. Mayr GmbH + Co KG
Further information:
http://www.mayr.com

More articles from Machine Engineering:

nachricht More functionalities: Microstructuring large surfaces with a UV-laser system
05.07.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A factory to go
04.07.2018 | Fraunhofer Institute for Manufacturing Engineering and Automation IPA

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>