Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Efficient Division of Labor between Humans and Robots in Assembly Systems

25.11.2013
In early September, the EU project »LIAA – Lean Intelligent Assembly Automation« started

Robots are meant to increase productivity, improve safety at work, and relieve people: The application-oriented EU project LIAA was kicked off on 2 September 2013.

In a European consortium led by Fraunhofer IPA, scientists will develop cost-effective robot systems and applications for assembly. The collaboration between humans and robots will help to combine the cognitive abilities of humans with the strength and repeatability of robots. It will not only increase productivity and relieve workers but also reduce the costs for automation solutions.

The LIAA project brings together leading European research institutes, component makers, technology providers, and end users. The project aims at developing a standard software framework for assembly systems, combining the strengths of humans and robots. Depending on the process and the workload of the worker, the assembly workstation can be used simultaneously by both robots and humans. While the robot handles, for instance, repetitive and heavy work, the worker can concentrate on cognitively demanding tasks that require fine motor skills. The project focuses on the following aspects:

Intelligent symbiosis between humans and robots

Intelligent algorithms are used to divide the assembly process into individual steps and assign them to workers or robots, based on their particular suitability and workload. Then, the tasks of the process step are described according to the needs of the individual resource. Hence, the robot is sent machine-readable commands or state diagrams, while the worker receives multimedia-based assembly instructions created on-site and presented via head-mounted displays (HMD) or tablets. Efficient cooperation requires each party to know which step the other performs. While the assembly process is carried out, the worker is informed about what the robot is doing or will do next, using augmented reality technology.

For example, it visualizes the trajectory data or displays workplace areas that are blocked. Camera-based information systems and intelligent perception and prediction algorithms ensure that the robot recognizes what process step the worker is currently performing. As a result, it can adjust its own behavior and, e.g. in case of delay, take over additional process steps.

Lean and low-cost

Within LIAA, five industrial pilot cases have been defined in collaboration with European end users. A crucial factor contributing to the cost-effectiveness of assembly processes is the use of low cost components. »LIAA aims at developing a framework that allows for the cost-effective use of robot assistants on the assembly shop floor, based on lightweight robots available on the market, low-cost sensors, and open-source robot control software«, says Martin Naumann, LIAA project coordinator and group manager in the Robot and Assistive Systems Department at Fraunhofer IPA.

The key advantage is that—based on the framework—system integrators can implement low-cost robot systems using lightweight robots. With the various standardized interfaces and a library of program modules to be parameterized and interlinked for the robot and the sensors, it is sufficient to configure the framework to the specific assembly application.

Worker safety

One of the research priorities of LIAA is to ensure the safety of humans. This is done, on the one hand, by performing (semi-) automated risk assessments of the assembly system at the design stage and, on the other, by taking adequate safety measures at the execution stage. It is based on LIAA’s staged safety concept, which, depending on the risk assessment, selects and combines preventive, soft and/or hard safety measures. The LIAA framework supports the integration of the necessary safety technology. The active involvement in relevant standardization and certification bodies ensures that the experience and insights gained from the project find their way into new regulations of safety standards for collaborative robots.

Focus on application

The research project LIAA is coordinated by Fraunhofer IPA, one of the leading organizations for applied research in the field of robotics. Other project partners are Universal Robot A/S (lightweight robots), Visual Components OY (simulation technology), InSystems Automation GmbH and LP Montagetechnik GmbH (assembly solutions), as well as Penny AB and EON Development AB (AR hardware and software). With the internationally renowned research organizations Fundacion Tecnalia Research & Innovation, DTI Danish Technological Institute, and the Laboratory for Manufacturing Systems and Automation LMS at the University of Patras, LIAA commands the technical expertise and wide technological know-how to achieve the desired project objectives.

The integration of five end users (Adam Opel AG, Dresden Elektronik Ingenieurtechnik GmbH, SPINEA s.r.o., Fischer IMF GmbH & Co. KG, and TELNET Redes Inteligentes SA) from different industrial sectors and with different assembly applications allows the developed framework to be put to the test in five technology settings while the project is in progress.

Contact and more information:
Dipl.-Ing. Martin Naumann, Project Coordinator
Robot and Assistive Systems Department
Fraunhofer IPA
Nobelstr. 12, D-70569 Stuttgart
Telephone +49 711 970-1291
Fax +49 711 970 1008
martin.naumann@ipa.fraunhofer.de
www.project-leanautomation.eu
LIAA Partner:
Fraunhofer Gesellschaft, Institute for Manufacturing Engineering and Automation, Germany
Universal Robots A/S, Denmark
Visual Components Oy, Finland
InSystems Automation GmbH, Germany
Penny A.B., Sweden
EON Development AB, Sweden
LP-Montagetechnik GmbH, Germany
Danish Technological Institute, Denmark
Fundacion Tecnalia Research & Innovation, Spain
University of Patras, Laboratory for Manufacturing Systems and Automation, Greece
Adam Opel AG, Germany
Dresden Elektronik Ingenieurtechnik GmbH, Germany
Spinea, s.r.o., Slovakia
Fischer IMF GmbH & Co. KG, Germany
TELNET Redes Inteligentes SA, Spain

Jörg Walz | Fraunhofer-Institut
Further information:
http://www.project-leanautomation.eu

More articles from Machine Engineering:

nachricht A sensor system learns to "hear": Reliable detection of failures in machines and systems
05.12.2018 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht Thick metal sheets? Laser welding!
30.11.2018 | Laser Zentrum Hannover e.V.

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>