09.05.2018

Graph theory contributes to stable power supply under the large and complex electric power systems

A joint research team from Tokyo Institute of Technology (Tokyo Tech) and North Carolina State University has clarified the fundamental principles for achieving the synchronization of power generator groups[1] in power networks, which is essential for the stable supply of electric power. Based on this principle, the team developed a method for constructing an aggregated model of a power network that can efficiently analyze and control the behavior of generator groups (including rotor phase angles and connection point voltages) with complex connection to a power grid.

A power network consisting of four generators and six buses (connection points). Generators 1 and 2 and Buses 1 and 2 to which these are connected become a symmetrical network for Bus 5. Similarly, Generators 3 and 4 and Buses 3 and 4 become symmetrical for Bus 6. The two sets of symmetrical generator groups and buses are shown as Clusters 1 and 2.

Credit: Proceedings of the IEEE

**Background**

It is known that the synchronization phenomenon of generator groups such as at multiple thermal power plants is closely related to the stable supply of electric power. Specifically, if a generator becomes out of synchronization, that generator and its surrounding generators will not be able to operate stably, and in worst cases, serious accidents such as power outages can occur.

... more about:

»algebraic »electric power »power grid »power plants »power supply »synchronization »thermal power plants

»algebraic »electric power »power grid »power plants »power supply »synchronization »thermal power plants

In addition, energy problems caused by global warming and the depletion of fossil fuels have become more serious on a global scale. Therefore, from the viewpoint of reducing carbon dioxide and systematic use of energy, high expectations have been placed on renewable energy such as typified by photovoltaic (PV) generation. When large-scale PV generation equipment and power storage equipment are introduced, in addition to power generation such as thermal power, hydraulic power, and nuclear power that are commonly used today, it is necessary to consider power charge and discharge by PV generated output and storage batteries in order to maintain equilibrium between supply and demand. However, the amount of power from PV generation fluctuates since there is uncertainty related to changes in weather and changes in solar radiation volume according to the time zone. This makes it more difficult to maintain the synchronization of generator groups. The need to analyze synchronization is greater than ever.

With conventional analysis, a major approach is based on numerical simulation. There are no studies that theoretically clarify the basic principles for how to properly synchronize generator groups according to the network structure of power transmission. There is an urgent need to build a power supply and demand framework that efficiently utilizes power storage equipment to allow for the uncertainty of PV generation and demand predictions.

Overview of Research Achievement

Assistant Professor Takayuki Ishizaki, Professor Jun-ichi Imura of Tokyo Tech, and Associate Professor Aranya Chakrabortty of the NSF ERC FREEDM System Center at North Carolina State University worked on multiple studies including power network modeling, stability analysis, and stabilization control from the perspective of graph theory[2]. They have clarified that the symmetry of the network in graph theory is the fundamental principle for realizing the synchronization of generator groups at thermal power plants integrated with power grids (connected to a network).

The behavior of generators connected through a network in a power grid is represented by complex equations (differential algebraic equations) that combine differential equations and algebraic equations. The differential equations express "behavior of generators" derived from Newton's second law of motion, and the algebraic equations express "power balance at power grid connection points" derived from Ohm's law and Kirchhoff's law[3]. Analysis of these differential algebraic equations was generally performed by transformation into a mathematically equivalent differential equation through a simplification method called the Kron reduction. However, the problems were that with the existing approach, since the algebraic equation representing the power grid is eliminated by deleting the redundant variable representing the connection point voltage, it was not very suitable for analyzing the relationship between the network structure of the power grid and the behavior of the generator.

To resolve this issue, they analyzed the network structure of the power grid contained in the algebraic equations from the viewpoint of symmetry based on an understanding of graph theory. Specifically, by analyzing the behavior of the generator without eliminating the algebraic equations, they discovered that the symmetry of the power grid (Figure 1) is the basic principle for realizing synchronization of generator groups. In addition, based on a new idea of simultaneously integrating generator groups that show synchronous behavior and the power grid that couples these, it became possible to mathematically and physically construct a feasible aggregated model (Figure 2).

It is expected that this achievement will result in a basis for developing analysis and control methods for realizing stable power supply to large and complex electric power systems. In the future, Professor Imura says that it aims to develop more complex electric power systems including converters, and to establish a theory to approximate the synchronization of generator groups.

This research result was published in *Proceedings of the IEEE* on April 25, 2018.

###

[1] Synchronization of Generator Groups: The phase angles of the rotors such as the turbines of multiple generators must be the same or reasonably close. Each rotor rotates according to the standard of a specific frequency (50 Hz or 60 Hz in Japan) in order to maintain its frequency. A difference in the frequency of each generator creates a difference in phase angle.

[2] Graph Theory: This is a mathematical theory related to graphs (network structure) composed of sets of vertices (nodes) and sets of edges. The power grid network is interpreted as a graph in which the connection point is the vertex and the transmission line linking the connection points is the edge.

[3] Ohm's Law, Kirchhoff's Law: These are physical laws that express the relationship between physical quantities such as voltage and current in an electric circuit. Ohm's law indicates that the voltage difference between two points in a circuit is proportional to the current flowing between them. Kirchhoff's law indicates that at the branch point in the circuit, the sum of the currents flowing to that point is equal to the sum of the currents flowing from that point.

Emiko Kawaguchi | EurekAlert!

**Further reports about:**
> algebraic
> electric power
> power grid
> power plants
> power supply
> synchronization
> thermal power plants

Neuron and synapse-mimetic spintronics devices developed

17.04.2019 | Tohoku University

New discovery makes fast-charging, better performing lithium-ion batteries possible

16.04.2019 | Rensselaer Polytechnic Institute

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

- Coolest and smallest star to produce a superflare found
- Star is a tenth of the radius of our Sun
- Researchers led by University of Warwick could only see...

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Anzeige

Anzeige

Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks

Science & Research

Science & Research

NASA | A Year in the Life of Earth's CO2

NASA Computer Model Provides a New Portrait of Carbon Dioxide

Black Holes Come to the Big Screen

The new movie "Interstellar" explores a longstanding fascination, but UA astrophysicists are using cutting-edge technology to go one better.

NASA's Swift Mission Observes Mega Flares from a Mini Star

NASA's Swift satellite detected the strongest, hottest, and longest-lasting sequence of stellar flares ever seen from a nearby red dwarf star.

NASA | Global Hawks Soar into Storms

NASA's airborne Hurricane and Severe Storm Sentinel or HS3 mission, will revisit the Atlantic Ocean for the third year in a row.

Baffin Island - Disappearing ice caps

Giff Miller, geologist and paleoclima-tologist, is walking the margins of melting glaciers on Baffin Island, Nunavut, Canada.

The Infrasound Network and how it works

The CTBTO uses infrasound stations to monitor the Earth mainly for atmospheric explosions.