Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manchester develops wireless ‘wear and tear’ sensor

23.02.2006


Sensors which are able to predict when mechanical parts in machinery and transport will breakdown before they actually do could be introduced by 2010, slashing maintenance costs across the manufacturing, automotive and plant machinery industries.



Scientists at The University of Manchester are to develop a new type of wireless sensor which will be able to remotely monitor mechanical parts and systems. The aim is to produce a sensor which can be seamlessly fitted inside gearboxes, motors, diesel engines, wheel bearings and door mechanisms, in which faults can occur.

Once fitted, the sensors would enable the ‘health’ of the parts to be remotely monitored by computers which would then use the data to predict when parts require maintenance or need replacing - before they fail.


Dr Andrew Starr, who will lead the Manchester side of the Europe-wide project, said: “By monitoring the condition of major parts we will be able to predict when they require maintenance and when they need replacing before they fail. This will dramatically reduce the delay and cost caused by impromptu break downs, and we hope it will also lead to a much more efficient service for customers.

He added: “In theory, we could get breakdowns down to zero with this technology.”

Manchester will develop a multi-measureand MEMS sensor which will measure a range of selected parameters (e.g. vibration, temperature, pressure) for condition monitoring applications. Another application will be inside lubricated machinery. In this instance, sensors would measure concentrations of metallic elements created through ‘wear and tear’ from which the life-span of the part could be calculated.

The sensor will be developed as part of a £4.1m initiative funded by the European Union under Framework 6, known as DYNAMITE (Dynamic Decisions in Maintenance), aimed at advancing the capabilities of European industry in the field of e-maintenance and condition monitoring. The project will focus on applications in plant machinery, manufacturing and transport.

The aim of DYNAMITE is to deliver a blend of leading-edge communications and sensor technologies to create a prototype system for the European market. The system is planned for completion in 2008.

Simon Hunter | alfa
Further information:
http://www.manchester.ac.uk

More articles from Power and Electrical Engineering:

nachricht Energy-efficient spin current can be controlled by magnetic field and temperature
17.08.2018 | Johannes Gutenberg-Universität Mainz

nachricht Scientists create biodegradable, paper-based biobatteries
08.08.2018 | Binghamton University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>