Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The search for fuels without contaminant components

26.05.2004


To convert a gaseous fuel into a clean liquid one is the target of the research project being undertaken by the School of Industrial Engineering and Telecommunications Engineers of Bilbao in the Basque Country. It involves, in the final analysis, obtaining fuels which do not have contaminant components, i.e. sulphur, nitrogen or aromatic components.



Participating in this project, financed by the MARCO programme of the European Union, are nine groups from different European countries, under the co-ordination of the School of Engineering. All of them are researching ways of obtaining clean fuels from natural gas.

The process basically consists of two stages: the first involves converting natural gas into synthesised gas, a mixture of carbon monoxide with carbon dioxide and hydrogen. In the second phase, this synthesised gas produces carbohydrates, from which petrol is subsequently produced.


The tasks corresponding to this first stage are being undertaken in a pilot plant at the University of the Basque Country (EHU/UPV). To this end, the EHU/UPV has a small reactor for such experiments. Fundamentally, work is being carried out to obtain catalysts for the conversion of the natural gas into that synthesised gas. These are necessary for the subsequent manufacture of hydrocarbons and what is being sought are catalysts where reactions can take place at lower temperatures, with greater criteria of selection, technically more efficient and economically more viable as well – in other words, reactions which are cheaper than those conventional catalysts. These catalysts, once prepared with these modifications and innovations and characterised, they have to be tested, i.e. they have to be made to react. Making the natural gas react with oxygen and also with water vapour in order to produce this synthesised gas, comparing how the different catalysts behave and selecting those showing the greatest advantages.

The process is very simple. The gas is introduced into the reactor, which is full of an inert material. The catalyst is introduced into the mix and the reaction initiated. This is the moment of transformation: the methane and oxygen converts into hydrogen and carbon monoxide. These gases go through a condenser, in which the water is drawn off and the gas is taken to the gas chromatograph.

In this machine the parts that have not reacted are analysed, as well as the yield (i.e. the level of conversion), etc. Aapart from testing the behaviour of various catalysts, researchers at the EHU/UPV experiment with the temperature, pressure, capacities, etc. All these parameters are controlled by computer.

Researchers have developed catalyst prototypes that notably enhance the behaviour of commercial products, as well as achieving the possibility of carrying out conversions at lower temperatures. Industrial application of the mentioned improvements considerably lower the production costs.

Researchers at the EHU/UPV are quite aware that natural gas reserves will one day dry up: This is why they are studying the possibilities of getting similar results from, for example, the gasification of the biomass. The research project is to finish in December of next year.

Nerea Pikabea | Basque research
Further information:
http://www.ehu.es
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=488&hizk=I

More articles from Power and Electrical Engineering:

nachricht Energy-efficient spin current can be controlled by magnetic field and temperature
17.08.2018 | Johannes Gutenberg-Universität Mainz

nachricht Scientists create biodegradable, paper-based biobatteries
08.08.2018 | Binghamton University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>