Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using ions to probe ionic liquids

12.09.2003


Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory are using a very small and light ion, the electron, to study the structure and dynamics of ionic liquids and how those properties influence chemical reactivity.



Ionic liquids are made of positive and negative ions that pack so poorly together that they are liquids near room temperature. They offer extremely low volatility, non-flammability, new reactivity patterns, and the formation of separate phases that allow the easy separation of products -- properties that make them safer to work with, easier to recycle, and less likely to pollute the atmosphere than traditional solvents.

Brookhaven chemist James Wishart and postdoctoral research associate Alison Funston use pulsed electron beams to initiate chemical reactions in ionic liquids, causing some of the ions to give up one of their own electrons. The isolated electrons can exist for hundreds of nanoseconds surrounded by solvent. Systematic variation of ionic liquid composition shows that solvated electron absorption spectra depend strongly on the structure of the ionic liquid and on the presence of functional groups such as hydroxyl groups.


While it takes only a few nanoseconds for electrons to become fully equilibrated (solvated) in ionic liquids, that is one thousand times slower than in most conventional solvents. During that time, the pre-solvated electrons are highly susceptible to capture by low concentrations of dissolved compounds. This can result in unanticipated reactivity patterns that have profound implications for uses of ionic liquids in radiation-filled environments such as the nuclear fuel cycle.

Wishart and Funston use electron scavengers to probe this reactivity and they measure ionic liquid solvation dynamics by following the laser-induced fluorescence of dye molecules that are sensitive to their surroundings. Viscosity is a key factor in all this work, and they have designed new, lower-viscosity ionic liquids to aid these studies.

To learn more, see Funston’s poster on Wednesday, Sept. 10, 2003, at 7:30 p.m. (PHYS 372), or hear her talk during the "Ionic Liquids: Progress and Prospects" session on Thursday, Sept. 11, at 2:50 p.m. (IEC 196), both at the Jacob Javits Convention Center. This work was funded by the Division of Chemical Sciences, Office of Basic Energy Sciences at DOE’s Office of Science, and by Brookhaven’s Laboratory Directed Research and Development Program.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov/

More articles from Power and Electrical Engineering:

nachricht Nano-scale process may speed arrival of cheaper hi-tech products
09.11.2018 | University of Edinburgh

nachricht Nuclear fusion: wrestling with burning questions on the control of 'burning plasmas'
25.10.2018 | Lehigh University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>