Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sunny times ahead for cheaper solar power

28.03.2003


Greater use of clean electricity from the sun should be a step closer, thanks to new research carried out in the UK.



The research has shown how the cost of generating solar electricity can be reduced, laying the foundation for a major expansion in the use of this sustainable energy technology.

The project has been undertaken by a team of physicists, chemists, material scientists and engineers at Sheffield Hallam University, with funding from the Swindon-based Engineering and Physical Sciences Research Council.


Electricity generation through the interaction of the sun’s heat and light with semiconductors is called photovoltaics (PV). Although PV’s environmental benefits are well-known, take-up of the technology has been limited by the relatively high cost of the solar cells that incorporate these semiconductors.

The team at Sheffield Hallam University has been exploring a range of options for cutting costs. These include the use of a low-cost semiconductor production method called electrodeposition, less reliance on expensive semiconductor materials, and the identification of alternative solar cell devices and manufacturing techniques offering higher conversion efficiencies.

Higher conversion efficiencies mean that more power can be produced per cell and that the cost of each unit of electricity generated is reduced. In the past, limited understanding of the scientific principles underlying PV meant that average solar cell efficiencies only improved from 15.9% to 16.5% between 1992 and 2001 for cadmium telluride based solar cells. By formulating a new “model” to describe the photovoltaic activity of these solar cells, the Sheffield Hallam Team has significantly improved this understanding and produced devices with 18% efficiency. This has opened up the prospect of new solar cells being developed commercially with higher conversion efficiencies than those currently available.

The research has been led by Dr I M Dharmadasa, who says: “We’ve already applied for two patents and are preparing the final draft of the third patent in connection with our work, but there’s a lot more science to be explored that could increase conversion efficiencies to over 20% in the near future”.

Jane Reck | alfa

More articles from Power and Electrical Engineering:

nachricht New graphene-based metasurface capable of independent amplitude and phase control of light
20.02.2020 | The Korea Advanced Institute of Science and Technology (KAIST)

nachricht A step towards controlling spin-dependent petahertz electronics by material defects
19.02.2020 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>