Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ion trek through polymer offers better batteries

21.03.2003


Cell phones, CD players and flashlights all wear down batteries far faster than we might wish. But there’s new hope, now that researchers at the Department of Energy’s Idaho National Engineering and Environmental Laboratory (INEEL) have overcome another barrier to building more powerful, longer-lasting lithium-based batteries.



The INEEL team, led by inorganic chemist Thomas Luther, discovered how lithium ions move through the flexible membrane that powers their patented rechargeable lithium battery. Research results are currently published online, and in the April 24, 2003, print issue of the Journal of Physical Chemistry B.

Luther calls their translucent polymer membrane an ’inorganic version of plastic kitchen wrap.’ The team, including chemists Luther, Mason Harrup and Fred Stewart, created it in 2000 by adding a ceramic powder to a material called MEEP ([bis(methoxyethoxyethoxy) phosphazene]), an oozy, thick oil. The resulting solid, pliable membrane lets positively charged lithium ions pass through to create the electrical circuit that powers the battery, but rebuffs negatively charged electrons. This keeps the battery from running down while it sits on the shelf-overcoming a major battery-life storage problem.


For years, rechargeable lithium battery performance has been disappointing because the batteries needed recharging every few days. After conquering the discharge challenge, INEEL’s team attacked the need for greater battery power to be commercially competitive. Their membrane didn’t allow sufficient passage of lithium ions to produce enough power, so they needed to understand exactly how the lithium ions move through the membrane on a molecular level.

First, they analyzed the MEEP membrane using nuclear magnetic resonance-the equivalent of a hospital MRI-to zero in on the best lithium ion travel routes. The results supported the team’s suspicion that the lithium ions travel along the ’backbone’ of the membrane. The MEEP membrane has a backbone of alternating phosphorus and nitrogen molecules, with oxygen-laden ’ribs’ attached to the phosphorus molecules.

Further analysis using infrared and raman spectroscopy (techniques that measure vibrational frequencies and the bonds between different nuclei) helped confirm that the lithium ions are most mobile when interacting with nitrogen. Lithium prefers to nestle into a "pocket" created by a nitrogen molecule on the bottom with oxygen molecules from a MEEP rib on either side.

Armed with this new understanding of how lithium moves through the solid MEEP membrane, the team has already starting making new membrane versions to optimize lithium ion flow. And that should make the team’s lithium batteries much more powerful.

The team’s research results are a major departure from the conventionally accepted explanation of lithium ion transport that proposed the lithium/MEEP transport mechanism as jumping from one rib to the next using the oxygen molecules as stepping stones.

Harrup, Stewart and Luther are optimistic their battery design will ultimately change the battery industry. The team projects that its polymer membrane will be so efficient at preventing battery run down, that batteries could sit unused for up to 500 months between charges with no loss of charge. Since the membrane is a flexible solid, it can be molded into any shape-which could open up new applications for batteries. And the membrane is very temperature tolerant-with the potential to solve portable power need problems in the frigid cold of space. The team is already working with several federal agencies on applications for its lithium battery designs.

The reference for the paper describing this research is "On the Mechanism of Ion Transport Through Polyphosphazene Solid Polymer Electrolytes: NMR, IR, and Raman Spectroscopic Studies and Computational Analysis of 15N Labeled Polyphosphazenes," Journal of Physical Chemistry B. INEEL authors include Thomas Luther, Fred Stewart, Randall A. LaViolette, William Bauer and Mason K. Harrup. The work was also supported by Christopher Allen of the University of Vermont in Burlington, Vt.


###
The INEEL is a science-based applied engineering national laboratory dedicated to supporting the U.S. Department of Energy’s missions in environment, energy, science and national defense. The INEEL is operated for the DOE by Bechtel BWXT Idaho, LLC.

Technical contact: Thomas A. Luther, (208) 526-0203, luthta@inel.gov; Mason K. Harrup, (208) 526-1356, harrmk@inel.gov.
Media contact: Deborah Hill, (208) 526-4723, dahill@inel.gov; Keith Arterburn, (208) 526-4845, artegk@inel.gov.


Deborah Hill | EurekAlert!
Further information:
http://www.inel.gov/

More articles from Power and Electrical Engineering:

nachricht Neuron and synapse-mimetic spintronics devices developed
17.04.2019 | Tohoku University

nachricht New discovery makes fast-charging, better performing lithium-ion batteries possible
16.04.2019 | Rensselaer Polytechnic Institute

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Marine Skin dives deeper for better monitoring

23.04.2019 | Information Technology

Geomagnetic jerks finally reproduced and explained

23.04.2019 | Earth Sciences

Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>