Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ion trek through polymer offers better batteries

21.03.2003


Cell phones, CD players and flashlights all wear down batteries far faster than we might wish. But there’s new hope, now that researchers at the Department of Energy’s Idaho National Engineering and Environmental Laboratory (INEEL) have overcome another barrier to building more powerful, longer-lasting lithium-based batteries.



The INEEL team, led by inorganic chemist Thomas Luther, discovered how lithium ions move through the flexible membrane that powers their patented rechargeable lithium battery. Research results are currently published online, and in the April 24, 2003, print issue of the Journal of Physical Chemistry B.

Luther calls their translucent polymer membrane an ’inorganic version of plastic kitchen wrap.’ The team, including chemists Luther, Mason Harrup and Fred Stewart, created it in 2000 by adding a ceramic powder to a material called MEEP ([bis(methoxyethoxyethoxy) phosphazene]), an oozy, thick oil. The resulting solid, pliable membrane lets positively charged lithium ions pass through to create the electrical circuit that powers the battery, but rebuffs negatively charged electrons. This keeps the battery from running down while it sits on the shelf-overcoming a major battery-life storage problem.


For years, rechargeable lithium battery performance has been disappointing because the batteries needed recharging every few days. After conquering the discharge challenge, INEEL’s team attacked the need for greater battery power to be commercially competitive. Their membrane didn’t allow sufficient passage of lithium ions to produce enough power, so they needed to understand exactly how the lithium ions move through the membrane on a molecular level.

First, they analyzed the MEEP membrane using nuclear magnetic resonance-the equivalent of a hospital MRI-to zero in on the best lithium ion travel routes. The results supported the team’s suspicion that the lithium ions travel along the ’backbone’ of the membrane. The MEEP membrane has a backbone of alternating phosphorus and nitrogen molecules, with oxygen-laden ’ribs’ attached to the phosphorus molecules.

Further analysis using infrared and raman spectroscopy (techniques that measure vibrational frequencies and the bonds between different nuclei) helped confirm that the lithium ions are most mobile when interacting with nitrogen. Lithium prefers to nestle into a "pocket" created by a nitrogen molecule on the bottom with oxygen molecules from a MEEP rib on either side.

Armed with this new understanding of how lithium moves through the solid MEEP membrane, the team has already starting making new membrane versions to optimize lithium ion flow. And that should make the team’s lithium batteries much more powerful.

The team’s research results are a major departure from the conventionally accepted explanation of lithium ion transport that proposed the lithium/MEEP transport mechanism as jumping from one rib to the next using the oxygen molecules as stepping stones.

Harrup, Stewart and Luther are optimistic their battery design will ultimately change the battery industry. The team projects that its polymer membrane will be so efficient at preventing battery run down, that batteries could sit unused for up to 500 months between charges with no loss of charge. Since the membrane is a flexible solid, it can be molded into any shape-which could open up new applications for batteries. And the membrane is very temperature tolerant-with the potential to solve portable power need problems in the frigid cold of space. The team is already working with several federal agencies on applications for its lithium battery designs.

The reference for the paper describing this research is "On the Mechanism of Ion Transport Through Polyphosphazene Solid Polymer Electrolytes: NMR, IR, and Raman Spectroscopic Studies and Computational Analysis of 15N Labeled Polyphosphazenes," Journal of Physical Chemistry B. INEEL authors include Thomas Luther, Fred Stewart, Randall A. LaViolette, William Bauer and Mason K. Harrup. The work was also supported by Christopher Allen of the University of Vermont in Burlington, Vt.


###
The INEEL is a science-based applied engineering national laboratory dedicated to supporting the U.S. Department of Energy’s missions in environment, energy, science and national defense. The INEEL is operated for the DOE by Bechtel BWXT Idaho, LLC.

Technical contact: Thomas A. Luther, (208) 526-0203, luthta@inel.gov; Mason K. Harrup, (208) 526-1356, harrmk@inel.gov.
Media contact: Deborah Hill, (208) 526-4723, dahill@inel.gov; Keith Arterburn, (208) 526-4845, artegk@inel.gov.


Deborah Hill | EurekAlert!
Further information:
http://www.inel.gov/

More articles from Power and Electrical Engineering:

nachricht Nano-scale process may speed arrival of cheaper hi-tech products
09.11.2018 | University of Edinburgh

nachricht Nuclear fusion: wrestling with burning questions on the control of 'burning plasmas'
25.10.2018 | Lehigh University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Putting food-safety detection in the hands of consumers

15.11.2018 | Information Technology

Insect Antibiotic Provides New Way to Eliminate Bacteria

15.11.2018 | Life Sciences

New findings help to better calculate the oceans’ contribution to climate regulation

15.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>