Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New conductor could provide answers for energy demand

07.11.2002


Oak Ridge National Laboratory and 3M Company are hoping for powerful results from a project aimed at making transmitting electricity more efficient and reliable.



Researchers from 3M, working with ORNL, are developing a promising replacement conductor for conventional power lines that addresses the problem of power outages caused by sagging lines. Lines sag under the heat of high current loads. The replacement conductor also avoids the high cost and environmentally harmful effects of building new towers.

"3M’s new composite-core conductor can increase the current-carrying capacity of a transmission line at minimal cost and environmental impact," said John Stovall, technical leader in ORNL’s Engineering Science and Technology Division. "Its advantage is using existing structures to increase transmission capacity without the cost of a new transmission line."


The design uses 3M Nextel 650 ceramic fibers, embedded in an aluminum matrix, to make a composite wire that does not stretch as much when heated. An enhancement in the new cables is the addition of zirconium, which makes the aluminum more resistant to deformation at higher temperatures. The aluminum matrix also helps prevent rust in the cable. 3M is working with Nexans and Wire Rope Industries to manufacture the conductor.

"The new conductor’s ability to handle greater temperatures will allow more current to be transmitted," Stovall said.

ORNL researchers will test 3M’s small, medium and large diameter conductor cables successively in a field experiment at ORNL. The tests will evaluate the overall performance of the conductors to verify predictions of computer models by looking at sag and tension data, such as stress/strain curve and breaking point, and by testing various conductor accessories that attach the conductor to the towers.

The 3M conductor and line accessories by Alcoa Fujikora and Preformed Line Products are being tested for thermocycling, or high current situations, at ORNL. In Fargo, N.D., the conductor and its accessories are being tested for resistance in high winds and ice on a transmission line owned by Western Area Power Administration, while corrosion tests are being performed by Hawaii Electric Co. ORNL is monitoring the performance of the conductor at the Fargo site as well as other future utility sites.

In addition, the National Electric Energy Testing, Research and Applications Center in Atlanta is testing all of the components in their laboratories.

"As far as I know, there is not a conventional conductor that has been tested as thoroughly," said Tom Rizy of the Engineering Science and Technology Division.

Each test will run from five to six months. The researchers hope to put each conductor through 500 cycles of simulated thermocycling--taking it to peak load and then returning it to normal load-- the equivalent of 30 years of peak loads.

The Power Line Conductor Accelerated Testing or PCAT facility will be a closed loop of approximately 2,400 feet of composite core conductor. A 2MW direct current power supply fed by a transformer will provide current for the site. The Tennessee Valley Authority is helping to design the line structure at PCAT and install poles, hardware and other accessories at the test site.

"If the tests show that the new conductor performs well, it could mean that electric utilities will take greater interest in replacing their lines with new cables," Stovall said. "It also could provide one possible answer to the growing energy demand and transmission bottlenecks."

Others involved in the project from ORNL are Roger Kisner, Larry Phillips and Randall Wetherington of Engineering Science and Technology Division. The project is funded by the Department of Energy and through a cooperative research and development agreement with 3M. TVA donated the PCAT line design and the Electric Power Research Institute’s Power Electronics Applications Center, a local research and development company, donated the load equipment to test the refurbished power supply that came from UT-Tullahoma’s Space Institute.


ORNL is a Department of Energy multiprogram research facility managed by UT-Battelle.

Written by Jodi Lockaby

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov/news
http://www.ornl.gov/

More articles from Power and Electrical Engineering:

nachricht Smart windows that self-illuminate on rainy days
29.05.2020 | Pohang University of Science & Technology (POSTECH)

nachricht Skoltech scientists get a sneak peek of a key process in battery 'life'
28.05.2020 | Skolkovo Institute of Science and Technology (Skoltech)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>