Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Industrial Maturity of Electrically Conductive Adhesives for Silicon Solar Cells Demonstrated

25.04.2018

The Fraunhofer Institute for Solar Energy Systems ISE and teamtechnik, an international leader in production technology, report that it is now possible to connect high efficiency solar cells using electrically conductive adhesives in series production. The results of the joint research project »KleVer« show that the adhesive technology is ready for the market and can be used as an alternative to the widespread soft soldering interconnection technology. Due to the much lower process temperatures of this technology compared to soldering, temperature-sensitive high efficiency solar cells can be connected using adhesives in a gentle and material-saving process.

In industrial production, the throughput is only slightly lower than with soldering. The reliability of the adhesive connection was confirmed in tests carried out in a climate chamber.


The conductive adhesive paste is applied using a screen printing mask

© Fraunhofer ISE


Solar cells with three, four or five busbars can be interconnected in the adhesive stringer

© Fraunhofer ISE

»In the last few years, we were able to greatly expand our expertise in connecting solar cells using electrically conductive adhesives and test this process on the laboratory scale. With the stringer unit, we were then able to further optimize the lead-free interconnection technology on the industrial scale,« explains Dr. Achim Kraft, project manager and team head of Interconnection Technologies at Fraunhofer ISE. Axel Riethmüller, project manager and Chief Operating Officer of teamtechnik, is also pleased:

»As manufacturer of high performance stringers, we are proud to hold a front position in connecting technology for temperature-sensitive heterojunction solar cells on an industrial scale through the development of this unit. We already have first orders coming in for the new stringers using this adhesive technique. This would not have been possible without the joint project with Fraunhofer ISE.«

Within the »KleVer« project, a stringer with an adhesive unit was successfully put in operation and tested. On this unit, it was demonstrated that solar cells as full or half-cells with three, four or five busbars could be connected using electrically conductive adhesives at a throughput of ca. 1600 cells per hour. The power of the heterojunction modules manufactured up to now with the adhesive technology is 320 watts for a standard size of 60 cells.

The process temperature of this technology remains below 180°C, avoiding damage to the hetero layers of the cells. This type of cell, which currently holds the lead in efficiency, cannot be soldered conventionally at temperatures over 200°C. Using adhesives greatly reduces the thermal and mechanical stresses in the cell, resulting in lower material tension.

Therefore, the danger of micro cracks and breakage occurring is also reduced. The cycle time for cell interconnection in the teamtechnik stringer is less than 2.3 seconds and is primarily determined by the hardening time of the adhesive material used.

The »KleVer« project was financially supported by the German Federal Ministry for Economic Affairs and Energy BMWi.

Short Profile: teamtechnik Maschinen und Anlagen GmbH

The teamtechnik Maschinen und Anlagen Gmbh is one of the international market leaders for innovative production technology, assembly and functional test systems. The company, based in Freiberg, Germany, focuses on developing custom automation solutions for the automative, solar and medical technology, in which it is a recognized technology leader. Founded in 1976, teamtechnik now has production sites in Germany, Poland, China and in the United States. With over 1000 employees worldwide, the systems manufacturer achieves a turnover of €170 million.

Weitere Informationen:

https://www.ise.fraunhofer.de/en

Karin Schneider | Fraunhofer-Institut für Solare Energiesysteme ISE

More articles from Power and Electrical Engineering:

nachricht Energy-saving new LED phosphor
24.04.2019 | Universität Innsbruck

nachricht Neuron and synapse-mimetic spintronics devices developed
17.04.2019 | Tohoku University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Proteins stand up to nerve cell regression

24.04.2019 | Life Sciences

New sensor detects rare metals used in smartphones

24.04.2019 | Life Sciences

Controlling instabilities gives closer look at chemistry from hypersonic vehicles

24.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>