Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fuel Cell Mobile Lighting System Featured at Space Shuttle Atlantis Launch

18.07.2011
Fuel cells are used in the space shuttle as one component of the electrical power system, so perhaps it was appropriate that a hydrogen fuel cell-powered mobile lighting system could be seen on the grounds of the Kennedy Space Center as the Space Shuttle Atlantis launched into space last week, the 135th and final mission for the NASA Space Shuttle Program.

The lighting system, sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) in conjunction with Boeing Co., and developed by Sandia National Laboratories with several industry partners, was deployed to the site of the final space shuttle launch and observed by visitors, shuttle astronauts and members of the international media.

The unit provided lighting in the international press area, and its auxiliary power was used to conveniently recharge the camera battery packs for a number of photographers at the event. The NASA deployment was the latest in a series of high-profile test sites where the lighting system has been utilized.

The hydrogen fuel cell-powered mobile lighting system is a clean, quiet and efficient alternative to traditional technologies commonly powered by diesel fueled generators. The system features a fuel cell running on pure hydrogen, resulting in zero-emission electrical power. The fuel cell produces electricity for an advanced, power-saving Light Emitting PlasmaTM (LEP) lighting system and additional auxiliary power up to 2.5 kW, which allows additional equipment (such as power tools, public address systems or security metal detectors) to be powered by the unit at the same time the system is providing illumination.

Current mobile lighting typically uses diesel fueled generators that produce greenhouse gases such as carbon dioxide nitrogen oxides, which produce pollutants and create smog, and soot, making them environmentally objectionable. In addition, diesel units are noisy and can create a safety hazard when construction personnel are distracted and cannot hear oncoming traffic.

Sandia researchers estimate that a single hydrogen fuel cell-powered lighting system would offset 900 gallons of diesel fuel per year and completely eliminate soot, nitrogen-oxide and carbon-dioxide emissions, allowing the system to be used indoors in contrast to current diesel technology.

“This hydrogen fuel cell-powered mobile lighting system has the very real potential to drastically reduce dependence on diesel-fueled mobile lighting across the United States and abroad,” said Lennie Klebanoff, Sandia’s project lead.

The prototype system has been tested in a variety of environments and has primarily focused on the entertainment, transportation and airport sectors. In addition to NASA (which also used the system during the Space Shuttle Endeavor launch) customers who have provided test sites include the California Department of Transportation, the 2010 Academy Awards ceremony, the 2011 Golden Globe Awards, the 2011 Screen Actors Guild Awards and the 2011 Grammy Awards. Boeing, the San Francisco International Airport and Paramount Pictures will soon be deploying units as well.

In addition to the DOE’s sponsorship and Sandia’s design and technical management role, the industry partners on the project include Boeing, Multiquip Inc., Altergy Systems, Luxim Corp., Lumenworks Inc., Stray Light Optical Technologies, Golden State Energy and Ovonic Hydrogen Solutions. The California Fuel Cell Partnership has provided support on hydrogen fuel for several deployments. Multiquip is implementing a manufacturing and commercialization plan for the system.

Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Mike Janes | Newswise Science News
Further information:
http://www.sandia.gov

More articles from Power and Electrical Engineering:

nachricht Energy-efficient spin current can be controlled by magnetic field and temperature
17.08.2018 | Johannes Gutenberg-Universität Mainz

nachricht Scientists create biodegradable, paper-based biobatteries
08.08.2018 | Binghamton University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>