Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Everything on a single chip: GaN power ICs with integrated sensors for electric vehicles

06.05.2019

A team of Fraunhofer researchers has succeeded in significantly enhancing the functionality of GaN power ICs for voltage converters: the researchers at Fraunhofer IAF integrated current and temperature sensors onto a GaN-based semiconductor chip, along with power transistors, freewheeling diodes and gate drivers. This development paves the way for more compact and efficient on-board chargers in electric vehicles.

For vehicles with electric drive to become a lasting presence in society, there needs to be greater flexibility in charging options. To make use of charging stations using alternating current, wall charging stations or conventional plug sockets where possible, users are dependent on on-board chargers.


In electromobility, many small, efficient systems need to be integrated in limited space. The voltage converter shown is based on GaN power ICs measuring 4 x 3 mm².

Fraunhofer IAF

As this charging technology is carried in the vehicle, it must be as small and lightweight as possible, and also cost-efficient. It therefore requires extremely compact yet efficient power electronics systems such as voltage converters.

Several components on a single chip

The Fraunhofer Institute for Applied Solid State Physics IAF has been conducting research on monolithic integration in the field of power electronics for several years. This requires several components such as power components, the control circuit and sensors to be combined on a single semiconductor chip.

The concept makes use of the semiconductor material gallium nitride. Back in 2014, the researchers at Fraunhofer IAF succeeded in integrating intrinsic freewheeling diodes and gate drivers on a 600 V-class power transistor. In 2017, a monolithic GaN half bridge was then operated at 400 V for the first time.

The latest research results combine current and temperature sensors and 600 V-class power transistors with intrinsic freewheeling diodes and gate drivers in a GaN power IC for the first time.

As part of the GaNIAL research project, the researchers have provided functional verification of full functionality in a GaN power IC, achieving a breakthrough in the integration density of power electronics systems.

»By additionally integrating sensors on the GaN chip, we have succeeded in significantly enhancing the functionality of our GaN technology for power electronics,« explains Dr Patrick Waltereit, project manager of GaNIAL and deputy head of the Power Electronics business unit at Fraunhofer IAF.

The full title of the GaNIAL project is »Integrated and efficient power electronics based on gallium nitride«. The project is funded by the German Federal Ministry of Education and Research; since 2016, this collaboration between Fraunhofer IAF and the BMW Group, Robert Bosch GmbH, Finepower GmbH and the University of Stuttgart has been working to develop powerful, compact GaN-based components for electromobility.

Integrated sensors for direct control

Compared to conventional voltage converters, the newly developed circuit simultaneously not only enables higher switching frequencies and a higher power density; it also provides for fast and accurate condition monitoring within the chip itself. »Although the increased switching frequency of GaN-based power electronics allows for increasingly compact designs, this results in a greater requirement for their monitoring and control.

This means that having sensors integrated within the same chip is a considerable advantage,« emphasizes Stefan Mönch, a researcher in the Power Electronics business unit at Fraunhofer IAF.

Previously, current and temperature sensors were implemented externally to the GaN chip. The integrated current sensor now enables feedback-free measurement of the transistor current for closed-loop control and short-circuit protection, and saves space compared to the customary external current sensors.

The integrated temperature sensor enables direct measurement of the temperature of the power transistor, thereby mapping this thermally critical point considerably faster and more accurately than previous external sensors, as the distance and resulting temperature difference between the sensor and the point of measurement is eliminated by the monolithic integration.

»The monolithic integration of the GaN power electronics with sensors and control circuit saves space on the chip surface, reduces the outlay on assembly and improves reliability. For applications that require lots of very small, efficient systems to be installed in limited space, such as in electromobility, this is crucial,« says Mönch, who designed the integrated circuit for the GaN chip. Measuring just 4 x 3 mm², the GaN chip is the basis for the further development of more compact on-board chargers.

Exploiting the unique characteristic of gallium nitride

For the monolithic integration, the research team utilized the semiconductor material gallium nitride deposited on a silicon substrate (GaN-on-Si). The unique characteristic of GaN-on-Si power electronics is the lateral nature of the material: the current flows parallel to the surface of the chip, meaning that all connections are located on the top of the chip and connected via conductor paths.

This lateral structure of the GaN components allows for the monolithic integration of several components, such as transistors, drivers, diodes and sensors, on a single chip. »Gallium nitride has a further crucial market advantage compared to other wide-bandgap semiconductors, such as silicon carbide: GaN can be deposited on cost-efficient, large-area silicon substrates, making it suitable for industrial applications,« explains Mönch.

Presentation at PCIM Europe

Project partner Finepower GmbH will be displaying the newly developed GaN power module in the exhibition in Hall 9, booth 440, at this year’s PCIM Europe. Researchers from Fraunhofer IAF will unveil their latest research results and developments in the field of power electronics at the accompanying conference. PCIM Europe will be hosted from 7 to 9 May 2019 in Nuremberg.

Originalpublikation:

https://www.iaf.fraunhofer.de/en/media-library/press-releases/GaNIAL.html

Weitere Informationen:

https://www.iaf.fraunhofer.de/en.html

Jennifer Funk | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

More articles from Power and Electrical Engineering:

nachricht RadarGlass: Functional thin-film structures for integrated radar sensors
02.05.2019 | Fraunhofer-Institut für Lasertechnik ILT

nachricht New technique could pave the way for simple color tuning of LED bulbs
30.04.2019 | Lehigh University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum sensor for photons

A photodetector converts light into an electrical signal, causing the light to be lost. Researchers led by Tracy Northup at the University of Innsbruck have now built a quantum sensor that can measure light particles non-destructively. It can be used to further investigate the quantum properties of light.

Physicist Tracy Northup is currently researching the development of quantum internet at the University of Innsbruck. The American citizen builds interfaces...

Im Focus: RadarGlass: Functional thin-film structures for integrated radar sensors

It is only an inconspicuous piece of paper, but it is an important milestone for autonomous driving: At the end of 2018 the three partners from the joint research project RadarGlass applied for a patent for an innovative radar system. The Fraunhofer Institute for Laser Technology ILT from Aachen, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP from Dresden and the Institute of High Frequency Technology IHF of RWTH Aachen University have developed a coating process chain that enables radar sensors to be integrated in car headlights. After almost two years in development they have manufactured a working prototype.

Completely autonomous vehicles pose an enormous challenge for sensor technology because, in principle, the supporting system must hear, see and feel better...

Im Focus: Novel method developed by HKBU scholars could help produce purer, safer drugs

Physics and Chemistry scholars from Hong Kong Baptist University (HKBU) have invented a new method which could speed up the drug discovery process and lead to the production of higher quality medicinal drugs which are purer and have no side effects. The technique, which is a world-first breakthrough, uses a specific nanomaterial layer to detect the target molecules in pharmaceuticals and pesticides in just five minutes.

The new HKBU invention can be applied to the drug discovery process, as well as the production and quality control stages of pharmaceutical manufacturing. It...

Im Focus: Decoupled graphene thanks to potassium bromide

The use of potassium bromide in the production of graphene on a copper surface can lead to better results. When potassium bromide molecules arrange themselves between graphene and copper, it results in electronic decoupling. This alters the electrical properties of the graphene produced, bringing them closer to pure graphene, as reported by physicists from the universities of Basel, Modena and Munich in the journal ACS Nano.

Graphene consists of a layer of carbon atoms just one atom in thickness in a honeycomb pattern and is the subject of intensive worldwide research.

Im Focus: Unprecedented insight into two-dimensional magnets using diamond quantum sensors

For the first time, physicists at the University of Basel have succeeded in measuring the magnetic properties of atomically thin van der Waals materials on the nanoscale. They used diamond quantum sensors to determine the strength of the magnetization of individual atomic layers of the material chromium triiodide. In addition, they found a long-sought explanation for the unusual magnetic properties of the material. The journal Science has published the findings.

The use of atomically thin, two-dimensional van der Waals materials promises innovations in numerous fields in science and technology. Scientists around the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Improving the well-being of heart-failure patients

06.05.2019 | Health and Medicine

Everything on a single chip: GaN power ICs with integrated sensors for electric vehicles

06.05.2019 | Power and Electrical Engineering

Specialized plant cells regain stem-cell features to heal wounds

03.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>