Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Algal protein gives boost to electrochemical water splitting

20.12.2011
Towards artificial photosynthesis for solar hydrogen generation
Water splitting in photo-electrochemical cells to yield hydrogen is a promising way to sustainable fuels. A team of Swiss and US scientists now made major progress in developing highly efficient electrodes – made of an algal protein, thus mimicking a central step in natural photosynthesis.

Photosynthesis is considered the «Holy Grail» in the field of sustainable energy generation because it directly converts solar energy into storable fuel using nothing but water and carbon dioxide (CO2). Scientists have long tried to mimic the underlying natural processes and to optimize them for energy device applications such as photo-electrochemical cells (PEC), which use sunlight to electrochemically split water – and thus directly generate hydrogen, cutting short the more conventional approach using photovoltaic cells for the electrolysis of water.

Traditionally, PEC electrodes are made of semiconducting materials such as metal oxides, some of which are also known for their photocatalytic properties. For quite some time, researchers at Empa’s Laboratory for High Performance Ceramics (LHPC) have been investigating nanoparticles of these materials, for instance titanium dioxide (TiO2), for the neutralization of organic pollutants in air and water. Collaborating with colleagues at the University of Basel and at Argonne National Laboratory in the US, they now succeeded in making a nano-bio PEC electrode, consisting of iron oxide conjugated with a protein from blue-green algae (also known as cyanobacteria), which is twice as efficient in water splitting as iron oxide alone.

Inspired by photosynthesis
Iron oxide, in particular hematite (alpha-Fe2O3), is a promising electrode material for PEC because it is susceptible to visible wavelengths and thus uses sunlight more efficiently than photocatalysts like TiO2, which can only use the UV part of solar radiation. What’s more, hematite is a low-cost and abundant material.

The second ingredient in the novel electrode «recipe» is phycocyanin, a protein from blue-green algae. «I was inspired by the natural photosynthetic machinery of cyanobacteria where phycocyanin acts as a major light-harvesting component. I wanted to make artificial photosynthesis using ceramics and proteins», recalls Debajeet K. Bora who designed the new electrode during his PhD thesis at Empa. «The concept of hematite surface functionalization with proteins was completely novel in PEC research.»

After Bora covalently cross-coupled phycocyanin to hematite nanoparticles that had been immobilized as a thin film, the conjugated hematite absorbed many more photons than without the algal protein. In fact, the induced photocurrent of the hybrid electrode was doubled compared to a «normal» iron oxide electrode.

One tough cookie
Somewhat surprisingly, the light harvesting protein complex does not get destroyed while in contact with a photocatalyst in an alkaline environment under strong illumination. Chemists would have predicted the complete denaturation of biomolecules under such corrosive and aggressive conditions. «Photocatalysts are designed to destroy organic pollutants, which are a burden to the environment. But here we have a different situation», says Artur Braun, group leader at Empa’s LHPC and principal investigator of the study. «There seems to be a delicate balance where organic molecules not only survive harsh photocatalytic conditions, but even convey an additional benefit to ceramic photocatalysts: They double the photocurrent. This is a big step forward».

The project was fully funded by the Swiss Federal Office of Energy (SFOE). Bora who will soon have completed his PhD thesis says he will continue what he started at Empa during a postdoc at the University of California, Berkeley, which he will assume early next year.

Dr. Artur Braun | EurekAlert!
Further information:
http://www.empa.ch

More articles from Power and Electrical Engineering:

nachricht Record efficiency for printed solar cells
09.07.2020 | Swansea University

nachricht Bespoke catalysts for power-to-X
09.07.2020 | Karlsruher Institut für Technologie (KIT)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Porous graphene ribbons doped with nitrogen for electronics and quantum computing

09.07.2020 | Physics and Astronomy

Record efficiency for printed solar cells

09.07.2020 | Power and Electrical Engineering

Rock 'n' control

09.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>