Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First-of-a-kind tension wood study broadens biofuels research

26.10.2011
Taking a cue from Mother Nature, researchers at the Department of Energy's BioEnergy Science Center have undertaken a first-of-its-kind study of a naturally occurring phenomenon in trees to spur the development of more efficient bioenergy crops.

Tension wood, which forms naturally in hardwood trees in response to bending stress, is known to possess unique features that render it desirable as a bioenergy feedstock. Although individual elements of tension wood have been studied previously, the BESC team is the first to use a comprehensive suite of techniques to systematically characterize tension wood and link the wood's properties to sugar release. Plant sugars, known as cellulose, are fermented into alcohol for use as biofuel.

"There has been no integrated study of tension stress response that relates the molecular and biochemical properties of the wood to the amount of sugar that is released," said Oak Ridge National Laboratory's Udaya Kalluri, a co-author on the study.

The work, published in Energy & Environmental Science, describes tension wood properties including an increased number of woody cells, thicker cell walls, more crystalline forms of cellulose and lower lignin levels, all of which are desired in an biofuel crop.

"Tension wood in poplar trees has a special type of cell wall that is of interest because it is composed of more than 90 percent cellulose, whereas wood is normally composed of 40 to 55 percent cellulose," Kalluri said. "If you increase the cellulose in your feedstock material, then you can potentially extract more sugars as the quality of the wood has changed. Our study confirms this phenomenon."

The study's cohesive approach also provides a new perspective on the natural plant barriers that prevent the release of sugars necessary for biofuel production, a trait scientists term as recalcitrance.

"Recalcitrance of plants is ultimately a reflection of a series of integrated plant cell walls, components, structures and how they are put together," said co-author Arthur Ragauskas of Georgia Institute of Technology. "This paper illustrates that you need to use an holistic, integrated approach to study the totality of recalcitrance."

Using the current study as a model, the researchers are extending their investigation of tension wood down to the molecular level and hope to eventually unearth the genetic basis behind its desirable physical features. Although tension wood itself is not considered to be a viable feedstock option, insight gleaned from studying its unique physical and molecular characteristics could be used to design and select more suitably tailored bioenergy crops.

"This study exemplifies how the integrated model of BESC can bring together such unique research expertise," said BESC director Paul Gilna. "The experimental design in itself is reflective of the multidisciplinary nature of a DOE Bioenergy Research Center."

The research team also includes Georgia Institute of Technology's Marcus Foston, Chris Hubbell, Reichel Sameul, Seokwon Jung and Hu Fan; National Renewable Energy Laboratory's Robert Sykes, Shi-You Ding, Yining Zeng, Erica Gjersing and Mark Davis, and ORNL's Sara Jawdy and Gerald Tuskan.

BESC is one of three DOE Bioenergy Research Centers established by the DOE's Office of Science in 2007. The centers support multidisciplinary, multi-institutional research teams pursuing the fundamental scientific breakthroughs needed to make production of cellulosic biofuels, or biofuels from nonfood plant fiber, cost-effective on a national scale.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

Morgan McCorkle | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Power and Electrical Engineering:

nachricht Fraunhofer starts development of refrigerant-free, energy-efficient electrocaloric heat pumps
09.12.2019 | Fraunhofer IPM

nachricht A solution for cleaning up PFAS, one of the world's most intractable pollutants
06.12.2019 | Colorado State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Uranium chemistry and geological disposal of radioactive waste

New insights using the diamond light

A new paper to be published on 16 December provides a significant new insight into our understanding of uranium biogeochemistry and could help with the UK's...

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Uranium chemistry and geological disposal of radioactive waste

16.12.2019 | Earth Sciences

New CRISPR-based system targets amplified antibiotic-resistant genes

16.12.2019 | Life Sciences

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>