Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vibrations make large landslides flow like fluid

05.04.2016

A new study may finally explain why some landslides travel much greater distances than scientists would normally expect. A team of researchers used a sophisticated computer model to show that vibrations generated by large slides can cause tons of rock to flow like a fluid, enabling the rocks to rumble across vast distances.

The research, by geoscientists at Brown University, Purdue University and the University of Southern California, is described in the Journal of Geophysical Research: Earth Surface.


This 1994 landslide in Mesa County, Colorado contained 30 million cubic meters or rock and ran out for 2.8 miles. New research helps explain how these large slides are able to run out so far. Vibrations within large slides cause them to flow like a fluid.

Credit: Jon White/Colorado Geological Survey

The "runout" distance of most landslides - the distance debris travels once it reaches flat land - tends to be about twice the vertical distance that the slide falls. So if a slide breaks loose a half-mile vertically up a slope, it can be expected to run out about a mile. But "long-runout" landslides, also known as sturzstroms, are known to travel horizontal distances 10 to 20 times further than they fall, according to Brandon Johnson, an assistant professor of earth, environmental and planetary sciences at Brown and the new study's lead author.

"There are a few examples where these slides have devastated towns, even when they were located at seemingly safe distances from a mountainside," said Johnson, who started studying these slides as a student of Jay Melosh, distinguished professor of earth, atmospheric and planetary sciences and physics at Purdue University.

One such example was a slide in 1806 that slammed into the village of Goldau, Switzerland, and claimed nearly 500 lives.

"It has been known for more than a century that very large, dry landslides travel in a fluid-like manner, attaining speeds of more than 100 miles per hour, traveling tens to hundreds of kilometers from their sources and even climbing uphill as they overwhelm surprisingly large areas," said Melosh, who was a part of the research team. "However, the mechanism by which these very dry piles of rock obtained their fluidity was a mystery."

Scientists developed several initial hypotheses. Perhaps the slides were floating on a cushion of air, or perhaps they ran atop a layer of water or ice, which would lower the friction they encountered. But the fact that these types of landslides also occur on dry, airless bodies like the Moon cast doubt on those hypotheses.

In 1979, Melosh proposed a mechanism called "acoustic fluidization" to explain these long runouts. Slides of sufficient size, Melosh proposed, would generate vibrational waves that propagate through the rock debris. Those vibrations reduce the effect of friction acting on the slide, enabling it to travel further than smaller slides, which don't generate as much vibration. The mechanism is similar to the way a car is more likely to slide if it's bouncing down a bumpy road as opposed to rolling along a smooth one.

In 1995, Charles Campbell from the University of Southern California created a computer model that was able to replicate the behavior of long-runout slides using only the dynamic interactions between rocks. No special circumstances like water or air cushions were required. However, due to the limitations of computers at the time, he was unable to determine what mechanism was responsible for the behavior.

"The model showed that there was something about rocks, when you get a lot of them together, that causes them to slide out further than you expect," Johnson said. "But it didn't tell us what was actually happening to give us this lower friction."

For this new study, Johnson was able to resurrect that model, tweak it a bit, and run it on a modern workstation to capture the dynamics in finer detail. The new model showed that, indeed, vibrations do reduce the effective friction acting on the slide.

The amount of friction acting on a slide depends in part on gravity pulling it downward. The same gravitational force that accelerates the slide as it moves downslope tends to slow it down when it reaches flat land. But the model showed that vibrational waves counteract the gravitational force for brief moments. The rocks tend to slide more when the vibration reduces the friction effect of the gravitational force. Because the vibrational waves affect different rocks in the slide at different times, the entire slide tends to move more like a fluid.

Those results of the new model are consistent with the acoustic fluidization idea that Melosh had proposed nearly 40 years ago, before computer power was adequate to confirm it.

"Campbell and I had a long-standing friendly rivalry and he did not believe my proposed acoustic fluidization mechanism could possibly explain his findings in the simulations," Melosh said. "As a result of Brandon's careful analysis of the interactions of the rock fragments in the simulations, we've now put to rest the debate, and it was a lot of fun for the three of us to work together."

Ultimately, the researchers hope this work might be a step toward better predicting these types of potentially devastating landslides.

"I would suggest that understanding why these landslides run out so far is really is a first step to understanding when and where they might occur in the future," Johnson said. "Our work suggests that all you need is enough volume to get these long runouts. This leads to the somewhat unsatisfying conclusion that these slides can happen nearly anywhere."

The results may also help scientists understand other types of events. For example, acoustic fluidization might play a role in slippage along fault lines, which contributes to large earthquakes.

"This emergent phenomenon, arising from the simple interactions of individual particles, is likely at play whenever large movements of rock occur," Johnson said.

###

The research was supported in part by a grant from NASA, which supported Johnson's graduate work.

Note to Editors:

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

Kevin Stacey | EurekAlert!

More articles from Earth Sciences:

nachricht Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide
15.08.2018 | University of Washington

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>