Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Undersea gas leaks off Israel’s coast are discovered by University of Haifa researchers

08.11.2012
A geophysics team from the Leon H. Charney School of Marine Sciences at the University of Haifa has identified a series of active gas springs on the Haifa Bay sea floor. “Geophysical information enables us to research beneath the sea floor and map out the entire system, from the gas sources to their penetration of the sea waters,” said Dr. Uri Schattner, head of the Department of Marine Geosciences

The terms “gas” and “sea” for many will invoke associations of reserves, business, and a lot of money. Whatever the association, most of the efforts in Israel’s energy field are being directed at gas buried deep under the Mediterranean seabed. Now a new geophysical study, the first of its kind in Israel, has uncovered a system of active gas springs in the Haifa Bay seabed, at relatively shallow depths, only a few dozen meters below the surface.

The study, published in the journal Continental Shelf Research, describes the entire system, from its sources under the sea floor through the natural springs emerging from the seabed.

“This is a natural laboratory for researching gas emissions from the sea floor – natural springs and less natural ones. We are only beginning to understand their contribution to climate and ecological change,” said Dr. Uri Schattner of the Leon H. Charney School of Marine Sciences at the University of Haifa, who led the research.

The first evidence of gas springs emerged from examining a map of the sea floor off Israel’s northern coast. A joint effort between the University of Haifa and the Israel Oceanographic and Limnological Research Institute revealed no less than 700 spots in the seabed that looked like possible gas springs. The researchers’ suspicions intensified when seismic data identified pockets of gas beneath the seabed.

Based on this evidence, researchers went out to sea four times to collect more data from the seabed and from under the sea floor. “Geophysical information enables us to research beneath the sea floor and map out the entire system, from the gas sources to their penetration of the sea waters,” said Dr. Schattner.

However, what they found exceeded all expectations. A gas deposit of 72 square kilometers was found on the continental shelf, at depths of between 37 meters to 112 meters. While many of the gases remain in the reserve, some still manage to escape into the sea.

“We don’t know yet what kind of gas we’re talking about, but its role in undermining the stability of the seabed is clear,” said Dr. Michael Lazar, a member of the research team. “This means that any discussion of marine infrastructure development must seriously relate to this shallow gas stratum.”

Israel’s Energy and Water Ministry is expending a great deal of effort on formulating National Master Plan 37H, which, among other things, deals with the transportation of gas produced from deep-sea drilling to pressure-reducing facilities. These will be located on the continental shelf, in the sea, from where the gas will be transported to the coast.

“Now we are beginning to understand that there is no substitute for thoroughly researching the stability of the sea floor to prevent an infrastructure failure, since any leak could cause an ecological disaster,” said Dr. Schattner.

During the coming months, the researchers will be making another expedition to the springs, this time with a team of biologists and geologists. This unique combination of experts from the Leon H. Charney School of Marine Sciences will be able to provide a better understanding of the type of gas involved and its influence on marine life near the sea floor.

“Every research trip challenges and fascinates us anew,” said Dr. Schattner. “This time we’ll be going out with a few vessels, each of which is dedicated to different types of surveying and sampling.”

For more details contact Rachel Feldman
rfeldman@univ.haifa.ac.il
+972-54-3933092
Communications and Media
University of Haifa

Rachel Feldman | University of Haifa
Further information:
http://www.haifa.ac.il

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>