Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows dietary supplements are good for coral health

05.05.2015

UM Rosenstiel School researchers found coral species can buffer the effects of climate change by increasing feeding during stressful environmental conditions

UM Rosenstiel School researchers found coral species can buffer the effects of climate change by increasing feeding during stressful environmental conditions


Most people know the health benefits of taking daily supplements, but what about endangered corals? A new study led by University of Miami Rosenstiel School of Marine and Atmospheric Science researchers found that the critically endangered Staghorn coral may benefit from supplemental nutrition to mitigate the adverse impacts of global climate change.

Credit: Infographic created by University of Miami students of the Applied Visual Science Lab (AVSL), Christine deSylva, Kelly Martin, Leslie Thompson, Ye Wang, and Yiran Zhu.

MIAMI - Most people know the health benefits of taking daily supplements, but what about endangered corals? A new study led by University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science researchers found that the critically endangered Staghorn coral may benefit from supplemental nutrition to mitigate the adverse impacts of global climate change. The results are the first to document that an endangered coral species, which was once found widely throughout South Florida and the Caribbean, can buffer the effects of increased CO2 in the ocean by increasing feeding rates.

"Our study shows a pathway to resilience previous unknown for this particular species, which was once a dominant species in South Florida," said UM Rosenstiel School Ph.D. student Erica Towle, lead author of the study. "This has implications for how we care for and where we out-plant Staghorn corals back onto reefs to give them the best chance for resilience possible in the future."

The research team separated eight genetically diverse colonies of Staghorn coral, Acropora cervicornis, into two groups - fed or unfed - and exposed them to elevated temperatures (30°C), a level just below the mean bleaching threshold in the Florida Keys, increased carbon dioxide concentrations (800 ppm), the CO2 levels predicted for 2065, or both (30°C/800 ppm), for eight weeks. The "fed" group was given a supplemental diet of dried zooplankton powder twice a week.

The researchers then analyzed the feeding rate of both groups by measured the amount of prey, a live rotifer species Brachionus plicatilis, each coral captured per hour and lipid content, an indicator ofenergy storage.

They found that the fed corals were able to maintain normal growth rates at both elevated temperature and elevated CO2, while unfed corals experienced significant decreases in growth compared to their fed counterparts. The results revealed that temperature, CO2 and feeding each had significant effects on the coral's growth rate.

"For many years we have known the some types of symbiotic algae can convey climate change resilience to corals," said co-author Chris Langdon, UM Rosenstiel School professor and chair of marine biology and ecology. "This study shows that behavioral and possibly physiological differences in the animal, which is half of the coral-algal symbiosis, can also convey resilience and not just to climate change but also to ocean acidification."

Caribbean coral reefs are in severe decline due to global climate changes, including increasing temperatures and CO2 concentrations, as a result of increased fossil fuel burning. Increased atmospheric carbon dioxide is absorbed by the ocean water, causing a decline in the pH of seawater, a condition known as ocean acidification.

"In this study we found that the threatened coral, Acropora cervicornis, was able to increase its feeding rate and stored energy reserves when exposed to high CO2 conditions at 26°C or 30°C and mitigate reductions in calcification that caused significant decreases in growth rate in unfed corals," according to the authors.

Only two percent of the Staghorn coral population remains in the Florida Reef Tract, so this is really one of the few 'good news' stories we've had recently about corals and climate change," said Towle.

###

The study, titled "Threatened Caribbean coral is able to mitigate the adverse effects of ocean acidification on calcification by increasing feeding rate," was published in the April 15th issue of the journal PLOS ONE. The paper's co-authors include: Erica K. Towle and Chris Langdon of the UM Rosenstiel School of Marine and Atmospheric Science and Ian C. Enochs of NOAA's Atlantic Oceanographic and Meteorological Laboratories in Miami.

Funding for this study was supported by MOTE Marine Laboratories "Protect Our Reefs" Grant (#POR-2012-22) to EKT and by the Mohamed bin Zayed Species Conservation Fund (#12054710) to EKT. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Video Abstract can be viewed here: http://youtu.be/XCOlOVq2XIc.

About the University of Miami's Rosenstiel School

The University of Miami is one of the largest private research institutions in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, visit: http://www.rsmas.miami.edu.

Diana Udel | EurekAlert!

More articles from Earth Sciences:

nachricht Volcanoes and glaciers combine as powerful methane producers
20.11.2018 | Lancaster University

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

Researchers use MRI to predict Alzheimer's disease

20.11.2018 | Medical Engineering

How to melt gold at room temperature

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>