Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

South Dakota Scientists Help Retrieve Ice Core From West Antarctica

12.02.2013
A slice of ice from 17,500 years ago can help scientists figure out how the Earth came out of the Ice Age and how climate change can happen in the future, according to South Dakota State University Professor Jihong Cole-Dai of the chemistry and biochemistry department. He and graduate student, Kari Peterson, spent nearly a month in Antarctica during Christmas break as part of the West Antarctica Ice Sheet Divide Ice Core project.

The main goal of the ice core project, Cole-Dai said “was to get an ice core more than two miles deep to give us nearly 70,000 years of history of the Earth’s climate.”

The National Science Foundation-funded project, which began eight years ago, involves more than 20 universities and national laboratories. The SDSU Ice Core and Environment Chemistry Lab, headed by Cole-Dai, has been a part of the project since 2006.

It took eight years to build the field camp and to collect the original ice core, because the harsh Antarctica conditions allow only a 60-day window each year in which to work. That task was completed in January 2012.

“This year was significant because of the completion of additional field work,” Cole-Dai said. Scientists wanted more ice to do further work on specific time periods. To do so, the team retrieved additional ice from five spots along the original ice core hole, while also leaving the lower portion of the hole intact.

“That in itself was quite a challenge and accomplishment,” Cole-Dai said. His former postdoctoral researcher, David Ferris, was part of the drilling team. Ferris became part of the project through the SDSU Ice Core and Environment Chemistry Lab during his doctoral work.

To accomplish this task, engineers had to design a special bit and drilling apparatus that used an actuator to push off to the side of the original borehole, explained Tony Wendricks, project coordinator for the Ice Drilling Design and Operations group at the University of Wisconsin, Madison. Ferris has worked on ice drilling team for three years and on the core handling team for one year.

“It’s a tricky thing – to maintain the parent hole,” Wendricks said.

“It’s never been done anywhere in the world,” Cole-Dai said. “You have a tool hanging at the end of a two-mile-long rope or cable and you want it to do very precise things, to move one degree in the direction you want and to bring the ice out.”

When the drillers brought up cylinders of ice, they handed them over to the core-processing team, Cole-Dai said. He and Peterson were on the team that took measurements and logged the information regarding the cores from the designated time periods. Then they packaged the ice cylinders to transport to the National Ice Core Laboratory in Denver.

Once the cores have been processed in Denver, each university lab will get its slice of the ice for analysis, which will likely take a year, Cole-Dai said. His SDSU team will work on a section of ice from 17,500 years ago that offers clues as to why the Earth began to emerge from the Ice Age.

At that point in history, Cole-Dai said, “something big happened – a large volcanic eruption or a number of them.” Others speculate that it might have been an object from outer space that struck the Earth.

“We want to gather more information from the ice and hopefully it will lead to better ideas, or support some of the ideas and disprove some of the others,” Cole-Dai said.

For this research, Cole-Dai’s team collaborates with a lab at the University of California, San Diego. SDSU analyzes the trace chemicals, while the California lab does the isotope measurements. Cole-Dai has three doctoral students working in his lab; two of them have been to Antarctica.

Researchers found fluoride, which is commonly associated with a volcanic eruption, in a previous ice core, explained Peterson. However, the levels were higher than those expected from an eruption. For her dissertation, Peterson will analyze the fluoride levels in the replicate core to confirm the original results.

In addition, Peterson took samples from a snow pit more than eight feet deep to look for signs of two volcanic eruptions a couple of years ago, one in Indonesia and one in Africa. “The eruptions were pretty small but very powerful,” Peterson said, “so the plume may have gotten into the stratosphere.”

When this happens, Cole-Dai explained, the wind patterns can carry the volcanic material to the entire world, including both poles. Because the snow at the Western Antarctica drill site never melts, the ice contains a history of the changing atmospheric environment and of the dynamic climate. As for the location to drill the ice core in the center of West Antarctica, Cole-Dai explained, “It’s like the continental divide. Ice flows away from this point; it doesn’t get ice from other locations.”

By measuring the kinds and quantities of chemicals in the ice cores and determining how those change over time, scientists can study the events that lead to global climate change, Cole-Dai said. This will lead to a better understanding of how human activities can influence climate. By studying the Earth’s past, Cole-Dai said, “we can better predict the future.”

About SDSU’s Ice Core and Environmental Chemistry Lab
SDSU students and faculty in the Ice Core and Environmental Chemistry Lab (ICECL) conduct basic research in atmospheric chemistry and on the global atmospheric environment and climate using snow and ice core samples from the polar regions of Earth. ICECL is a part of the research program of SDSU Department of Chemistry and Biochemistry.
About South Dakota State University
Founded in 1881, South Dakota State University is the state’s Morrill Act land-grant institution as well as its largest, most comprehensive school of higher education. SDSU confers degrees from eight different colleges representing more than 175 majors, minors and specializations. The institution also offers 29 master’s degree programs, 12 Ph.D. and two professional programs.
The work of the university is carried out on a residential campus in Brookings, at sites in Sioux Falls, Pierre and Rapid City, and through Cooperative Extension offices and Agricultural Experiment Station research sites across the state.

Jihong.Cole-Dai@SDSTATE.EDU

Jihong Cole-Dai | Newswise
Further information:
http://www.sdstate.edu

More articles from Earth Sciences:

nachricht Seismic study reveals huge amount of water dragged into Earth's interior
18.12.2018 | National Science Foundation

nachricht A damming trend
17.12.2018 | Michigan State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>