Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shocked meteorites provide clues to Earth's lower mantle

13.01.2020

Deep below the Earth's surface lies a thick rocky layer called the mantle, which makes up the majority of our planet's volume. While Earth's mantle is too deep for humans to observe directly, certain meteorites can provide clues to this unreachable layer.

In a study recently published in Science Advances, an international team of scientists, including Sang-Heon Dan Shim and Thomas Sharp of Arizona State University (ASU), have completed a complex analysis of a "shocked meteorite" (one that has experienced high-pressure and high-temperature conditions through impact events) and gained new insight into Earth's lower mantle.


Artist's rendition of Earth, cut away to reveal individual layers, including the deep mantle.

Credit: Mingming Li/ASU

Suizhou: a shocked meteorite

Shocked meteorites have provided many examples of deep mantle minerals since 1969 when high-pressure mineral Ringwoodite was discovered.

For this study, lead author Luca Bindi of the University of Florence (Italy), Shim and Sharp of ASU's School of Earth and Space Exploration and Xiande Xie of the Guangzhou Institute of Geochemistry (China), focused their efforts on a sample of a shocked meteorite called Suizhou.

"Suizhou was an ideal meteorite for our team to analyze," explains Shim, who specializes in using high-pressure experiments to study Earth's mantle. "It provided our team with samples of natural high-pressure minerals like those believed to make up the Earth's deep mantle."

Suizhou fell in 1986 in the Hubei province in China. Immediately after the fall of this meteorite, a group of scientists were able to find and collect samples.

"It was an observed fall," explains Sharp, who specializes in studying shocked meteorites to understand shock and impact in the solar system. "So it did not suffer any chemical weathering on Earth and therefore there is no alteration of the iron.

Bridgmanite: The dominant material in the lower mantle

The Suizhou meteorite sample the researchers used for this study contains a specific silicate called "bridgmanite." This silicate is considered the dominant material in the Earth's lower mantle and makes up about 38 volume percent of our planet. It was first discovered in the shocked meteorite Tenham in 2014.

While it was previously thought that iron metal mainly existed in Earth's core, about 15 years ago scientists discovered in the lab that iron in bridgmanite can undergo self-oxidation from which it can produce metallic iron.

This process, a chemical reaction called "charge disproportionation," is where atoms re-distribute electrons among themselves and produce two or three cation forms with different oxidation states (in this case, some Fe(II) ions in bridgmanite convert to Fe(III) and Fe(0), the latter of which forms metallic iron).

The question remained, however, if this process could actually occur in nature.

Using high-resolution electron microscope imaging and spectroscopy, the researchers were able to conduct a set of complex analyses of the Suizhou meteorite sample in nanometer scale.

Through these analyses, the research team discovered metallic iron nanoparticles coexisting with bridgmanite in the shocked meteorite sample, representing the first direct evidence in nature of the iron disproportionation reaction, which so far had only been observed in high-pressure experiments.

"This discovery demonstrates that charge disproportionation can occur in natural high-pressure environments and therefore in the deep interior of the Earth," says Shim.

The implications of this study, however, go beyond just this discovery, and may ultimately help us understand the greater question of how Earth itself was oxidized.

While we know that Earth's upper mantle is more oxidizing than other planets and that the more oxidizing conditions of the upper mantle may be linked to the sudden rise of oxygen in the atmosphere 2.5 billion years ago, we don't yet know how the upper mantle of the Earth became more oxidizing.

"It is possible that when materials of the lower mantle are transported to the upper mantle by convection, there would be a loss of metallic iron and the oxidized iron in bridgmanite would cause more oxidizing conditions in the upper mantle," says Shim.

"Our discovery provides a possible explanation for the more oxidizing conditions of the Earth's upper mantle and supports the idea that deep interior processes may have contributed to the great oxygenation event on the surface."

Media Contact

Karin Valentine
karin.valentine@asu.edu
480-695-7340

 @ASU

http://asunews.asu.edu/ 

Karin Valentine | EurekAlert!
Further information:
https://asunow.asu.edu/20200110-asu-shocked-meteorites-provide-clues-earth-lower-mantle
http://dx.doi.org/10.1126/sciadv.aay7893

More articles from Earth Sciences:

nachricht Greening at high latitudes may inhibit the expansion of midlatitude deserts
09.01.2020 | Institute of Atmospheric Physics, Chinese Academy of Sciences

nachricht Formation of a huge underwater volcano offshore the Comoros
07.01.2020 | GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

Im Focus: SuperTIGER on its second prowl -- 130,000 feet above Antarctica

A balloon-borne scientific instrument designed to study the origin of cosmic rays is taking its second turn high above the continent of Antarctica three and a half weeks after its launch.

SuperTIGER (Super Trans-Iron Galactic Element Recorder) is designed to measure the rare, heavy elements in cosmic rays that hold clues about their origins...

Im Focus: LZH’s MOMA laser ready for the flight to Mars

One last time on Earth it has been turned on in France in December 2019. The next time the MOMA laser developed by the Laser Zentrum Hannover e.V. (LZH) is going into operation will be on Mars. The ExoMars rover into which the laser is integrated has now successfully passed the thermal vacuum tests at Airbus in Toulouse, France.

For 18 days the ExoMars rover Rosalind Franklin was subjected to thermal vacuum tests at Airbus. There, it had to withstand strong changes in temperature and...

Im Focus: Atacama Desert: A newly discovered biocoenosis of lichens, fungi and algae shapes entire landscapes

The Atacama Desert in Chile is the oldest and most arid desert on earth. Organisms living in this area have adapted to the extreme conditions over thousands of years. A research team led by Dr Patrick Jung has now discovered and investigated a previously unknown biocoenosis of lichens, fungi, cyanobacteria and algae. It colonises tiny stones, so-called grit and its need for water is satisfied by fog and dew. These organisms also decompose the rock on and in which they live. The scientists believe that this is how they have shaped the landscape of the Atacama Desert. Their study was published in the renowned scientific journal "Gebiology".

Many desert areas have large black spots in the sand. These spots are mineral deposits, so-called desert varnish. In the Atacama Desert, which can be compared...

Im Focus: Nano antennas for data transfer

For the first time, physicists from the University of Würzburg have successfully converted electrical signals into photons and radiated them in specific directions using a low-footprint optical antenna that is only 800 nanometres in size.

Directional antennas convert electrical signals to radio waves and emit them in a particular direction, allowing increased performance and reduced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

International Coral Reef Symposium 2020 Holds Photo Competition

19.12.2019 | Event News

The Future of Work

03.12.2019 | Event News

 
Latest News

Scientists in Mainz develop a more sustainable photochemistry

14.01.2020 | Life Sciences

Laserphysics: At the pulse of a light wave

13.01.2020 | Physics and Astronomy

New function for potential tumor suppressor in brain development

13.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>