Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ship exhaust makes oceanic thunderstorms more intense

08.09.2017

Thunderstorms directly above two of the world's busiest shipping lanes are significantly more powerful than storms in areas of the ocean where ships don't travel, according to new research.

A new study mapping lightning around the globe finds lightning strokes occur nearly twice as often directly above heavily-trafficked shipping lanes in the Indian Ocean and the South China Sea than they do in areas of the ocean adjacent to shipping lanes that have similar climates.


This is lightning behind an aircraft carrier in the Strait of Malacca. New research finds lightning strokes occurred nearly twice as often directly above heavily-trafficked shipping lanes in the Indian Ocean and the South China Sea year-round from 2005 through 2016.

Credit: pxhere.com; public domain

The difference in lightning activity can't be explained by changes in the weather, according to the study's authors, who conclude that aerosol particles emitted in ship exhaust are changing how storm clouds form over the ocean.

The new study is the first to show ship exhaust can alter thunderstorm intensity. The researchers conclude that particles from ship exhaust make cloud droplets smaller, lifting them higher in the atmosphere. This creates more ice particles and leads to more lightning.

The results provide some of the first evidence that humans are changing cloud formation on a nearly continual basis, rather than after a specific incident like a wildfire, according to the authors. Cloud formation can affect rainfall patterns and alter climate by changing how much sunlight clouds reflect to space.

"It's one of the clearest examples of how humans are actually changing the intensity of storm processes on Earth through the emission of particulates from combustion," said Joel Thornton, an atmospheric scientist at the University of Washington in Seattle and lead author of the new study in Geophysical Research Letters, a journal of the American Geophysical Union.

"It is the first time we have, literally, a smoking gun, showing over pristine ocean areas that the lightning amount is more than doubling," said Daniel Rosenfeld, an atmospheric scientist at the Hebrew University of Jerusalem who was not connected to the study. "The study shows, highly unambiguously, the relationship between anthropogenic emissions - in this case, from diesel engines - on deep convective clouds."

Mapping lightning and exhaust

All combustion engines emit exhaust, which contains microscopic particles of soot and compounds of nitrogen and sulfur. These particles, known as aerosols, form the smog and haze typical of large cities. They also act as cloud condensation nuclei - the seeds on which clouds form. Water vapor condenses around aerosols in the atmosphere, creating droplets that make up clouds.

Cargo ships crossing oceans emit exhaust continuously and scientists can use ship exhaust to better understand how aerosols affect cloud formation.

In the new study, co-author Katrina Virts, an atmospheric scientist at NASA Marshall Space Flight Center in Huntsville, Alabama, was analyzing data from the World Wide Lightning Location Network, a network of sensors that locates lightning strokes all over the globe, when she noticed a nearly straight line of lightning strokes across the Indian Ocean.

Virts and her colleagues compared the lightning location data to maps of ships' exhaust plumes from a global database of ship emissions. Looking at the locations of 1.5 billion lightning strokes from 2005 to 2016, the team found nearly twice as many lightning strokes on average over major routes ships take across the northern Indian Ocean, through the Strait of Malacca and into the South China Sea, compared to adjacent areas of the ocean that have similar climates.

More than $5 trillion of world trade passes through the South China Sea every year and nearly 100,000 ships pass through the Strait of Malacca alone. Lightning is a measure of storm intensity, and the researchers detected the uptick in lightning at least as far back as 2005.

"All we had to do was make a map of where the lightning was enhanced and a map of where the ships are travelling and it was pretty obvious just from the co-location of both of those that the ships were somehow involved in enhancing lightning," Thornton said.

Forming cloud seeds

Water molecules need aerosols to condense into clouds. Where the atmosphere has few aerosol particles - over the ocean, for instance - water molecules have fewer particles to condense around, so cloud droplets are large.

When more aerosols are added to the air, like from ship exhaust, water molecules have more particles to collect around. More cloud droplets form, but they are smaller. Being lighter, these smaller droplets travel higher into the atmosphere and more of them reach the freezing line, creating more ice, which creates more lightning. Storm clouds become electrified when ice particles collide with each other and with unfrozen droplets in the cloud. Lightning is the atmosphere's way of neutralizing that built-up electric charge.

Ships burn dirtier fuels in the open ocean away from port, spewing more aerosols and creating even more lightning, Thornton said.

"I think it's a really exciting study because it's the most solid evidence I've seen that aerosol emissions can affect deep convective clouds and intensify them and increase their electrification," said Steven Sherwood, an atmospheric scientist at the University of New South Wales in Sydney who was not connected to the study.

"We're emitting a lot of stuff into the atmosphere, including a lot of air pollution, particulate matter, and we don't know what it's doing to clouds," Sherwood said. "That's been a huge uncertainty for a long time. This study doesn't resolve that, but it gives us a foot in the door to be able to test our understanding in a way that will move us a step closer to resolving some of those bigger questions about what some of the general impacts are of our emissions on clouds."

###

The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing 60,000 members in 137 countries. Join the conversation on Facebook, Twitter, YouTube, and our other social media channels.

The preceeding press release and accompanying images can be found at: http://news.agu.org/press-release/ship-exhaust-makes-oceanic-thunderstorms-more-intense/

Ship exhaust makes oceanic thunderstorms more intense

AGU Press Contact:

Nanci Bompey
+1 (202) 777-7524
nbompey@agu.org

University of Washington Press Contact:

Hannah Hickey
+1 (206) 543-2580
hickeyh@uw.edu

Media Contact

Nanci Bompey
nbompey@agu.org
202-777-7524

 @theagu

http://www.agu.org 

Nanci Bompey | EurekAlert!

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>