Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists gain new insights into the development of the moon

26.01.2009
A team of scientists, including a researcher from the University of Münster, has discovered the oldest zircons from the moon ever to be found.

On the basis of these crystals the researchers have gained important new insights into the history of the moon's development. Their results are presented in the latest issue of the prestigious Nature Geoscience magazine.

Dr. Thorsten Geisler-Wierwille from the Institute of Mineralogy at the University of Münster has been examining tiny zircon crystals with his colleagues from Australia and the USA. The crystals come from moonrock already collected 36 years ago on the Apollo 17 mission. With the the help of modern microanalytical processes and uranium-lead dating the scientists have ascertained the age of the crystals. The oldest zircon they found is about 4.4 billion years old.

This very precise dating of the crystals' age enables the scientists to reconstruct for the first time, and more accurately, the crystallization and cooling history of the magma ocean on the moon. This magma ocean was formed after a collision around 4.5 billion years ago between the young Earth and a proto-planet the size of Mars.

"Any reconstruction of the cooling history was only possible to a limited extent before this," says Geisler-Wierwille, "because isotope systems that could have been used to ascertain age were badly damaged by intense meteorite impacts on the moon around 3.9 billion years ago. However, the uranium-lead dating system is very stable in the face of extreme pressures and temperatures and is therefore highly suitable for establishing how long ago things were formed."

The crystallization of zircon in the lunar magma indicates that at this point there was only a small quantity of magma still in existence. The scientists conclude that almost the entire magma ocean was solidified 100 million years after the moon was formed.

Dr. Geisler-Wierwille made the headlines once before with the discovery of especially old crystals. He and Martina Menneken from the WWU's Institute of Mineralogy belong to a team of researchers who in 2007 found the oldest diamonds in the world.

Dr. Christina Heimken | idw
Further information:
http://www.uni-muenster.de/Mineralogie/personen/geisler.html
http://www.nature.com/ngeo/journal/vaop/ncurrent/abs/ngeo417.html
http://www.uni-muenster.de/

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>