Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research shows ice sheets as large as Greenland's melted fast in a warming climate

10.11.2017

New research published in Science shows that climate warming reduced the mass of the Cordilleran Ice Sheet by half in as little as 500 years, indicating the Greenland Ice Sheet could have a similar fate.

The Cordilleran Ice Sheet covered large parts of North America during the Pleistocene - or Last Ice Age - and was similar in mass to the Greenland Ice Sheet. Previous research estimated that it covered much of western Canada as late as 12,500 years ago, but new data shows that large areas in the region were ice-free as early as 1,500 years earlier. This confirms that once ice sheets start to melt, they can do so very quickly.


Unvegetated terminal moraine from Nahanni National Park, NWT, Canada dating to the end of the last ice age (about 13,800 years ago).

Photo by Brian Menounos, University of Northern British Columbia

The melting of the Cordilleran Ice Sheet likely caused about 20 feet of sea level rise and big changes in ocean temperature and circulation. Because cold water is denser than warm water, the water contained by ice sheets sinks when it melts, disrupting the "global conveyor belt" of ocean circulation and changing climate.

Researchers used geologic evidence and ice sheet models to construct a timeline of the Cordilleran's advance and retreat. They mapped and dated moraines throughout western Canada using beryllium-10, a rare isotope of beryllium that is often used as a proxy for solar intensity. Measurements were made in Purdue University's PRIME Lab, a research facility dedicated to accelerator mass spectrometry.

"We have one group of beryllium-10 measurements, which is 14,000 years old, and another group, which is 11,500 years old, and the difference in these ages is statistically significant," said Marc Caffee, a professor of physics in Purdue's College of Science and director of PRIME Lab. "The only way this would happen is if the ice in that area had completely gone away and then advanced."

Around 14,000 years ago the Earth started warming, and the effects were significant - ice completely left the tops of the mountains in western Canada, and where there were ice sheets, they probably thinned a lot. About a thousand years later, the climate cooled again, and glaciers started to advance, then retreated as conditions warmed at the onset of the Holocene.

If the Cordilleran Ice Sheet had still been there when the climate started cooling during a period known as the Younger Dryas, cirque and valley glaciers wouldn't have advanced during that time. This indicates a rapid disappearance rather than a gradual melting of the ice sheet.

Reconstructing precise chronologies of past climate helps researchers establish cause and effect. Some have wondered whether the melting of the Cordilleran Ice Sheet caused the Younger Dryras cooling, but it's unlikely; the cooling started too early for that to be true, according to the study. What caused the cooling is still up for debate.

Creating a timeline of glacial retreat also provides insight into how the first people got to North America. Current estimates place human migration to the south of the Cordilleran and Laurentide Ice Sheets between 14,600 and 18,000 years ago, but how they got there isn't clear. Some say humans could have crossed through an opening between the ice sheets, but these new findings show that passage was likely closed until 13,400 years ago.

This paper should serve as motivation for further studies, said Caffee. Continental ice sheets don't disappear in a simple, monolithic way - it's an extremely complicated process. The more we know about the retreat of the Cordilleran Ice Sheet, the better we'll be able to predict what's to come for the Greenland Ice Sheet.

Media Contact

Kayla Zacharias
kzachar@purdue.edu
765-494-9318

 @PurdueUnivNews

http://www.purdue.edu/ 

Kayla Zacharias | EurekAlert!

Further reports about: PRIME Younger Dryas conveyor belt ice sheet ocean temperature sea level rise

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>