Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The area of influence of earthquakes could be larger than is currently thought

22.11.2006
Dr Álvaro Corral, a Ramón y Cajal researcher for the UAB Department of Physics, studies the relationships between the time and place of earthquake occurrences (ie, the jumps between an initial earthquake and another earthquake at a later time in another place) using statistical physics methods.

By analysing data on the distance between consecutive earthquakes, Dr Corral has concluded that the area of influence of seismic activity could be larger than was thought until now. The result of his work has been published in Physical Review Letters.

According to Corral, this work could lead to support for the idea of long-range earthquake triggering. It has always been thought that the influence of an earthquake was restricted to the rupture zone created by the earthquake at a geological fault, but the researchers now suspect that an earthquake may produce "aftershocks" much further afield, even on the opposite side of a tectonic plate to a main shock.

The diffusion of earthquake occurrences could be like a drop of ink in water. When the ink drop is added (the type of problem usually studied in statistical physics), an ink molecule collides with the water molecules at certain moments and in certain positions; similarly, a series of earthquakes are said to appear in time and in space. However, the reality is that the characteristics of these two cases are very different.

The expansion of the ink molecules occurs on a characteristic scale: that of the ink molecules colliding with water molecules (ie, they always collide after moving a relatively set distance in a relatively set amount of time). Yet earthquakes do not spread in such a normal, regular way. The distance between one earthquake and the subsequent earthquake can be larger or smaller than in previous cases, and the variation seems to be completely arbitrary. There is no characteristic scale.

The data observed seem to imply that the boundary for the influence of earthquakes could be much further away from the epicentre than was previously thought. It is difficult to calculate this boundary, since beyond a distance of 200 kilometres, the influence of an earthquake is hard to distinguish from "background seismicity", that is, the occurrence of other, unrelated earthquakes. Dr Corral believes that more sophisticated analysis techniques could be used to overcome this problem.

Scale models

The researcher has also observed that the earthquake occurrences in a certain region, such as California, could be extrapolated to the whole planet. In other words, the spatiotemporal occurrence of earthquakes in California is a scale model of what happens in the whole world. By observing this region, therefore, we are seeing a smaller version of the whole world. This shows the strange, fractal nature of seismicity, that is, that it maintains its form irrespective of its scale.

The results of this research also show that the diffusion of earthquakes does not depend on their size: small and large earthquakes spread in the same way. Therefore, small earthquakes, which are much more frequent, are the best model to use for the occurrence of larger earthquakes. This magnitude independence is anti-intuitive, and the researcher cannot yet offer any explanation for the phenomenon.

Octavi López Coronado | alfa
Further information:
http://www.uab.es

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>