Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New theory for mass extinctions

26.10.2006
A new theory on just what causes Earth's worst mass extinctions may help settle the endless scientific dust-up on the matter.

Whether you favor meteor impacts, volcanic eruptions, cosmic rays, epidemics, or some other cause for the worst mass extinction events in Earth's history, no single cause has ever satisfied all scientists all the time for any extinction event. That may be because big extinctions aren't simple events.

The new Press/Pulse theory gets around the controversy by rejecting the all-or-nothing approach to mass extinction, calling instead on a combination of deadly sudden catastrophes - "pulses" - with longer, steadier pressures on species - "presses."

"What we wanted to do is move away from the idiosyncratic approach to extinction mechanisms and look for what these intervals had in common. If you have A and B you will get a mass extinction," said Ian West, a 2006 graduate of Hobart and William Smith Colleges in Geneva, NY.

West and Hobart and William Colleges paleontology professor Nan Crystal Arens are scheduled to present their work on the Press/Pulse theory on Wednesday, 25 October, at the Annual Meeting of the Geological Society of America in Philadelphia.

Using databases that chart genera of marine organisms and their extinctions through the fossil record, West and Arens divided the last 488 million years of geologic history into four groups: times of suspected impact events (Pulses), times of massive volcanic eruptions (Presses), times when neither Presses nor Pulses occurred, and times when Press and Pulse coincided. They compared average extinction rates in geologic stages in each of these groups.

During stages when only impacts occurred, an average of 7.3% of genera became extinct every million years; 8.3% of genera became extinct in stages characterized by flood volcanism alone. When neither Press nor Pulse were active, 8.2% of genera became extinct. These averages are statistically indistinguishable. "Statistically speaking, extinction rates are not significantly higher at times of impact or volcanism vs. no geologic events," West said.

In contrast, when Press and Pulse events coincided, an average of 12.8% of genera became extinct per million years, statistically higher than the rate observed during other geologic stages.

"The goal of our work was to come up with a unifying theory of mass extinctions. We also wanted to make it applicable to what's going on now," said West, referring to rapid losses of biodiversity worldwide now underway as a result of climate change and destruction of habitats by human activities.

"Is this model, which seems to work for the big five mass extinction events in Earth's history, applicable today?" West asked.

At first glance the answer would appear to be 'no.' There is, after all, no massive flood basalt eruption underway today, nor have there been any recent meteor impacts. On the other hand, some very similar effects are being seen on Earth.

"We came up with the idea that humans themselves act as both Press and a Pulse," said West. "Humans began manipulating the environment - the Press - from the advent of agriculture. However, that alone did not trigger the current mass extinction. That seems to have been triggered by the pulse of industrialization and the demands for energy and resources that came with it."

The bottom line, says West is that it's extremely hard to pinpoint simple causes for Earth's great periods of extinction.

"We sought to rephrase the question," said Arens. "In the modern world, species are commonly endangered by some stress before the final death blow falls. It seems likely that biological systems in the past worked in similar ways. By demonstrating that the coincidence of long-term stress and catastrophic disturbance is needed to produce big extinctions, we hope to break down some of the polarization characteristic of many discussions of extinction. We hope to send people back to the data with a more inclusive hypothesis to test."

WHEN & WHERE

PRESS/PULSE: A GENERAL THEORY OF MASS EXTINCTION?
Pennsylvania Convention Center: Exhibit Hall C, Booth #34
Wednesday, October 25, 1:30 p.m. – 5:30 p.m.

Ann Cairns | EurekAlert!
Further information:
http://www.geosociety.org

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

Computer model predicts how fracturing metallic glass releases energy at the atomic level

20.07.2018 | Physics and Astronomy

Relax, just break it

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>