Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study breaks ice on ancient Arctic thaw

11.08.2006
Historic polar cruise yields new clues about global warming

A new analysis of ocean-floor sediments collected near the North Pole finds that the Arctic was extremely warm, unusually wet and ice-free the last time massive amounts of greenhouse gases were released into the Earth's atmosphere – a prehistoric period 55 million years ago. The findings appear in the Aug. 10 issue of Nature.

Current climatic evidence and computer models suggest the modern Arctic is rapidly warming, gaining precipitation and becoming ice-free because of carbon emissions. Scientists have been keen to unlock the mysteries of the Arctic when this last happened – an interval known as the Paleocene/Eocene thermal maximum, or PETM. Researchers have long known that a massive release of greenhouse gases, probably carbon dioxide or methane, occurred during the PETM. Surface temperatures also rose in many places by as much as 15 degrees Fahrenheit in the relative geological instant of about 100,000 years.

Past analyses of seafloor sediments and sedimentary rocks worldwide have given scientists many clues about the PETM, but sediments from the Arctic remained elusive until 2004, when the $12.5 million Arctic Coring Expedition (ACEX) recovered the first deep sediments from beneath the ice near the North Pole.

"Building a picture of ancient climatic events is a lot like putting together a jigsaw puzzle, and what ACEX allowed us to do was fill in a blank section of the PETM picture," said Gerald Dickens, a Rice University geochemist and study co-author who conducted the initial, shipboard chemical analyses of all the ACEX core samples.

"The ACEX cores clearly show that the Arctic got very warm and wet during the PETM," Dickens said. "Even tropical marine plants thrived in the balmy conditions."

Certain species of microscopic plants in today's oceans are known to rapidly multiply and create algal blooms, including "red tides," under certain conditions. Dickens said that fossils of these plants – known only from the tropics before the PETM – suddenly become common in the ACEX cores.

Furthermore, the chemistry of the organic carbon in the ACEX cores may rule out some earlier theories about what caused the PETM. The diminution of these alternate explanations strongly suggests that an enormous amount of carbon entered the atmosphere at the beginning of the PETM, either from volcanic eruptions or the melting of oceanic gas hydrates – mixtures of methane and ice on the seafloor.

In previous research, Dickens and colleagues have estimated that the amount of methane carbon trapped in ocean gas hydrates worldwide likely exceeds all the carbon in all the world's oil, coal and natural gas reserves combined. Given the magnitude of carbon trapped in oceanic gas hydrates, and the fact that hydrates are susceptible to melting when adjacent seawater warms by as little as 3-4 degrees Fahrenheit, Dickens said it is probable that at least some of the PETM greenhouse gases came from methane that bubbled up from the seafloor.

"The magnitude of the carbon input at the PETM outset is truly enormous," Dickens said. "If it were all volcanic, you'd need something like a Vesuvius-sized eruption each day for centuries, which seems very unlikely."

Dickens said the ACEX cores, which have already resulted in three previous Nature papers, are likely to produce even more groundbreaking results.

"It's difficult to overestimate the importance of this kind of experimental evidence," he said. "It's like opening a door to a room you've seen on a blueprint but never stepped foot inside."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>