Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

American Geophysical Union

30.06.2006
The Antarctic ozone hole will not disappear before 2068, nearly 20 years later than previously estimated, according to scientists using a new computer model. The ozone hole is caused by chlorine and bromine gases that destroy ozone in the stratosphere (an upper layer of Earth's atmosphere) during the southern hemisphere springtime.

The gases come from human-produced chemicals such as chlorofluorocarbons (CFCs). The Montreal Protocol, an international agreement adopted in 1987, limited the production of ozone-depleting substances. Amendments in 1990 and 1992 completely eliminated legal production and use of most of these chemicals, although there will be continued emissions from previously produced and stored quantities of those chemicals that have not been destroyed or recycled.

Researchers from NASA, the National Oceanic and Atmospheric Administration (NOAA), and the National Center for Atmospheric Research (NCAR) have simulated the ozone hole in a new math- based computer model. They used estimates of chlorine and bromine levels over Antarctica from NASA and NOAA satellite observations, NOAA ground-level observations, NCAR air-based observations taken from airplanes, and the temperature of the Antarctic stratosphere in late spring, when the ozone hole begins to form.

The model accurately reproduced the ozone hole area in the Antarctic stratosphere over the past 27 years. The researchers then made projections of ozone-depleting substances in the future, leading to their prediction that the ozone hole will recover in 2068, not in 2050, as previously estimated. Their findings will be published 30 June in Geophysical Research Letters, a journal of the American Geophysical Union.

"The Antarctic ozone hole is the poster child of ozone loss in our atmosphere," said lead author Paul Newman, a research scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "Over areas that are farther from the poles like Africa or the U.S., the levels of upper atmospheric ozone are only three to six percent below natural levels. But, over Antarctica, ozone is 70 percent lower in the spring. This new method allows us to more accurately estimate ozone-depleting gases over Antarctica, and how they will decrease over time, improving the ozone hole."

The researchers also show that the ozone hole has not yet started to significantly shrink, which they predict will not occur until approximately 2018. They also concluded that greenhouse gas- forced climate change will have only a small impact on the Antarctic stratosphere and recovery of the ozone hole.

The upper ozone layer is important because it blocks 90-99 percent of the Sun's ultraviolet radiation from making contact with Earth's surface. This solar radiation can cause skin cancer and genetic and eye damage, and it can impact marine life.

"My job is to track ozone-depleting CFCs around the globe on a weekly basis," said Steven Montzka, a research chemist in the Global Monitoring Division at NOAA's Earth Systems Research Laboratory in Boulder, a co-author of the paper. "We make calculations with that information to determine how gases containing chlorine and bromine that have life spans in the atmosphere as long as 100 years are affecting ozone. This new prediction model is a very useful step forward to refining our understanding of ozone hole recovery time scales."

Harvey Leifert | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

nachricht Artificial Glaciers in Response to Climate Change?
10.08.2018 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

Tiny Helpers that Clean Cells

14.08.2018 | Life Sciences

Algorithm provides early warning system for tracking groundwater contamination

14.08.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>