Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tibet Provides Passage for Chemicals to Reach the Stratosphere

11.05.2006


NASA and university researchers have found that thunderstorms over Tibet provide a main pathway for water vapor and chemicals to travel from the lower atmosphere, where human activity directly affects atmospheric composition, into the stratosphere, where the protective ozone layer resides.


A trio of NASA satellites observe in synchrony the vertical structures of thunderstorms (lower track) and their influences on ice clouds (color shades), water vapor (contours) and pollutants just above Earth’s lower atmosphere (higher track). Image courtesy of Rong Fu, Cinda Gillilan, Jonathan H. Jiang and Brian Knosp.



Learning how water vapor reaches the stratosphere can help improve climate prediction models. Similarly, understanding the pathways that ozone-depleting chemicals can take to reach the stratosphere is essential for understanding future threats to the ozone layer, which shields Earth from the sun’s harmful ultraviolet rays.

Researchers from the Georgia Institute of Technology, Atlanta; NASA’s Jet Propulsion Laboratory, Pasadena, Calif.; and the University of Edinburgh, Scotland, performed their analysis using data from the Microwave Limb Sounder instrument on NASA’s Aura spacecraft, combined with data from NASA’s Aqua and Tropical Rainfall Measuring Missions.


The team collected more than 1,000 measurements of high concentrations of water vapor in the stratosphere over the Tibetan Plateau and the Asian monsoon region. The measurements were collected during August 2004 and August 2005, during the height of monsoon season. Through the use of wind data and NASA atmospheric models, they found the water vapor originated over Tibet, just north of the Himalayan mountain range.

The team also found that even though more thunderstorms occurred over India, the storms over Tibet transported nearly three times more water vapor into the lower stratosphere than the more frequent thunderstorms that occur over India.

"This study shows that thunderstorms over Tibet are mainly responsible for the large amount of water vapor entering the stratosphere," said Dr. Rong Fu, associate professor in Georgia Tech’s School of Earth and Atmospheric Sciences, who led the study. "The rainfall may not be as frequent over Tibet as over the Indian monsoon area, but because Tibet is at a much higher elevation than India, the storms over Tibet are strong and penetrate very high, and send water vapor right into the stratosphere."

The study also found that the same pathway is responsible for transporting carbon monoxide, an indicator of air pollution, into the upper atmosphere.

"There’s almost no carbon monoxide production in Tibet, so it’s widely believed that carbon monoxide is transported to the tropopause over Southeast Asia and the Indian subcontinent,” Fu said. The tropopause divides the lower atmosphere from the stratosphere, and is located at an altitude of about 18 kilometers (11 miles) above Earth over the tropics and Tibet.

Fu added, "Our study finds thunderstorms over Tibet transport as much carbon monoxide to the lower stratosphere as do those over India. When long-lived pollutants are transported out of the lower atmosphere, they can move rapidly. Pollutants from Asia, for example, can wind up on the other side of the world."

The findings are published in the Proceedings of the National Academy of Sciences.

Aura, Aqua and the Tropical Rainfall Measuring Mission are part of the NASA-centered international Earth Observing System, and are managed by NASA’s Goddard Space Flight Center, Greenbelt, Md. Aura’s Microwave Limb Sounder was built by JPL.

For more information on the Microwave Limb Sounder and Aura, visit: http://mls.jpl.nasa.gov and http://aura.gsfc.nasa.gov .

For information on Aqua and the Tropical Rainfall Measuring Mission, visit: http://aqua.nasa.gov/ and http://trmm.gsfc.nasa.gov/ .

JPL is managed for NASA by the California Institute of Technology.

David Terraso | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Earth Sciences:

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

nachricht Artificial Glaciers in Response to Climate Change?
10.08.2018 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>