Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glacial pace of erosion was not so slow, new technique shows

12.12.2005


Glaciers, rivers and shifting tectonic plates have shaped mountains over millions of years, but earth scientists have struggled to understand the relative roles of these forces and the rates at which they work.



Now, using a new technique, researchers at the University of Michigan, California Institute of Technology and Occidental College have documented how fast glaciers eroded the spectacular mountain topography of the Coast Mountains of British Columbia.

Their work is described in the Dec.9 issue of the journal Science.


U-M assistant professor of geological sciences Todd Ehlers has been working in a remote region of the Coast Mountains for the past three years, studying rates of glacial erosion and topographic change. Using a new geochemical tool developed by the Caltech researchers, he and his collaborators were able to quantify the rates and magnitude of glacial erosion across a major valley. They found that glaciers radically altered the landscape around 1.8 million years ago, about the time that Earth began to experience a number of ice ages.

The erosion rates documented in the study suggest that glaciers eroded the mountains six times faster than rivers and landslides had before glaciation began. The researchers also found that glaciers scraped at least 2 kilometers (about 1.2 miles) of rock from the mountains.

"These results are exciting," Ehlers said, "because they clearly document that glaciers are the most efficient method for sculpting the topography of the range. They also demonstrate the utility of a new geochemical tool that can be applied to study erosion in other mountain ranges."

The study relied on a technique called helium-helium thermochronometry, developed by Caltech’s Ken Farley and his former student David Shuster, now at Berkeley Geochronology Center in Berkeley, California. "It’s an unwieldy name, but it gives us a new way to study the rate at which rocks approached Earth’s surface in the past," Shuster said.

The new technique rests on three facts: one, that rocks on the surface have often come from beneath the surface; two, that the ground gets steadily warmer as depth increases; and three, that helium leaks out of a warm rock faster than a cold one. By determining how fast the helium leaked out of a rock, it’s also possible to determine how fast the rock cooled and, ultimately, how deeply it was buried, as well as when and how fast it got uncovered.

The team showed that the cooling of the rock happened very quickly and that the entire valley was carved out in about 300,000 years.

"We can say that the glacier was ripping out a huge amount of material and dumping it into the ocean," Farley said. "And rather than taking evidence from a single instant, we can for the first time see an integral of hundreds of thousands of years. So this is a new way to get at the rate at which glaciers do their work."

Why the intense erosion occurred 1.8 million years ago is not `well understood, Shuster said, "but it seems to coincide with some very interesting changes that took place in Earth’s climate system at that time."

In addition to Ehlers, Farley and Shuster, Margaret Rusmore, a geology professor at Occidental College in Los Angeles, was a coauthor on the paper. The research was supported by grants from the National Science Foundation.

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>