Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Contract signed for GOCE data analysis and modelling

27.10.2004


Yesterday, an important milestone was reached in the development of ESA’s GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission, when a contract, worth €7.8 million, was signed between ESA and the Institute for Astronomical and Physical Geodesy (IAPG) from the Technical University of Munich.



The contract means that the scientific data resulting from the GOCE mission will be analysed by a consortium of 10 European universities and research institutes led by the IAPG. The consortium will then use the data to produce an unprecedented high-accuracy and high spatial-resolution global model of the Earth’s gravity field and of the geoid. Scientists from Switzerland, Germany, Denmark, the Netherlands, Austria, Italy and France will all cooperate in this project. The work will be managed by IAPG as prime contractor with the help of the National Institute of Space Research in the Netherlands (SRON).

The ceremony took place at the Technical University in Munich, Germany on 26 October when the contract was signed by Prof. Wolfgang Herrmann the President of the Technical University of Munich and Dr. Volker Liebig ESA’s Director of Earth Observation. Subsequently, all the project partners signed their contracts with the prime contractor.


GOCE, due for launch in 2006, is the first Earth Explorer Core mission to be developed as part of ESA’s Living Planet Programme. This mission, entirely dedicated to the exploration of the Earth’s gravity field, will significantly advance our knowledge in areas of solid-Earth physics, geodesy, oceanography as well as climate-change research.

The primary instrument is the newly developed gravity gradiometer. In order to attain the required sensitivity it is combined with precise GPS tracking, and active drag-free control of the spacecraft. Because the gravitational signal is stronger closer to the Earth, GOCE has been designed to fly in a particularly low orbit – at an altitude of just 250 km. The satellite has no mechanical moving parts since it has to be completely stable and rigid to ensure the acquisition of true gravity readings.

The signing of the contract for the ’GOCE High-Level Processing Facility’ ensures that the data acquired by the mission will be expertly translated into valuable information that will further our understanding of the planet.

Michael Rast | alfa
Further information:
http://www.esa.int

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Restoring vision by gene therapy

Latest scientific findings give hope for people with incurable retinal degeneration

Humans rely dominantly on their eyesight. Losing vision means not being able to read, recognize faces or find objects. Macular degeneration is one of the major...

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New image of a cancer-related enzyme in action helps explain gene regulation

05.06.2020 | Life Sciences

Silicon 'neurons' may add a new dimension to computer processors

05.06.2020 | Physics and Astronomy

Protecting the Neuronal Architecture

05.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>