Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Doppler on Wheels" to Intercept Eye of Hurricane Isabel, Future Weather Model Zooms in for Forecast

17.09.2003

Three "Doppler On Wheels" (DOW) mobile radars developed partly at the National Center for Atmospheric Research (NCAR) are heading toward the mid-Atlantic coast to intercept the eye of Hurricane Isabel as the powerful storm hits land. Meanwhile, the nation’s next-generation weather model, developed at NCAR and other labs, is training its electronic "eyes" on a virtual Isabel at NCAR’s supercomputing center in Boulder.

The DOWs will deploy at or near the coast in the direct path of the storm. "From a head-on position," says NCAR affiliate scientist Josh Wurman, "the DOW can collect unprecedented high resolution data and rapid-scan Doppler radar data from inside the eye."

At close range the scans will observe fine-scale but potentially damaging storm features as small as 40-feet across, including wind streaks, gusts and other structures. The DOWs are a collaborative effort between NCAR and the Center for Severe Weather Research. Wurman operates the vehicles through the CSWR, with support primarily from the National Science Foundation.

"This is an exciting opportunity to improve our understanding of the finer scale structure of one of nature’s most powerful phenomena," says Cliff Jacobs, program director in NSF’s division of atmospheric sciences. "Federal support for national centers and university researchers has allowed the nexus of people, tools, and ideas to converge to gain new knowledge about hurricanes."

The newest of the radar systems, called the Rapid-DOW, sends out six radar beams simultaneously. By raking the sky six times faster than traditional single-beam radars, Rapid-DOW can visualize three-dimensional volumes in five-to-ten seconds and observe boundary layer rolls, wind gusts, embedded tornadoes and other phenomena as they evolve.

Back in Boulder, NCAR scientists are running the nation’s future Weather Research and Forecast (WRF) model on NCAR’s IBM "Blue Sky" supercomputer, testing the model’s skill at predicting Isabel’s intensity, structures and track. Operating on a model grid with data points only 4 kilometers (2.5 miles miles) apart, Blue Sky hums with calculations all night as WRF zooms in on Isabel, bringing into focus the storm’s internal structure, including eyewall and rain bands. The result is a high-precision, two-day forecast. In the morning, the model starts over to create a new five-day forecast using a 10-kilometer grid and updated conditions.

NCAR’s primary sponsor, the National Science Foundation (NSF), supported the development of both WRF and the DOW at NCAR. The WRF model is a cooperative effort by NCAR and several federal agencies and military branches.

"It’s an exciting opportunity," says scientist Jordan Powers, a WRF development manager at NCAR. "Resolving a hurricane’s fine scale structures in real time with this next-generation weather model is breaking new ground for forecasters and researchers."

The DOW is pushing technological limits of its own. "The DOW has revolutionized the study of tornadoes and other violent and small scale atmospheric phenomena," says Wurman. The large, spinning, brightly-colored radar dishes have intercepted the eyes of five hurricanes: Fran, Bonnie, Floyd, Georges and Lili. Data from the retired DOW1 resulted in the discovery of entirely new phenomena in hurricanes, called intense boundary layer rolls, which contain the highest and most dangerous wind gusts.

Though Powers won’t be using DOW data for WRF’s forecasts this week, he and others may compare Wurman’s real-world observations with the model results in the future.

NSF Program Officer: Cliff Jacobs, (703) 292-8521, cjacobs@nsf.gov

The National Science Foundation is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.3 billion. National Science Foundation funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 30,000 competitive requests for funding, and makes about 10,000 new funding awards. The National Science Foundation also awards over $200 million in professional and service contracts yearly.

Cheryl Dybas | NSF
Further information:
http://www.nsf.gov/

More articles from Earth Sciences:

nachricht "Flight recorder" of rocks within the Earth’s crust
16.04.2019 | Universität Bern

nachricht More than 90% of glacier volume in the Alps could be lost by 2100
09.04.2019 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Simple and Fast Method for Radiolabelling Antibodies against Breast Cancer

23.04.2019 | Life Sciences

Quantum gas turns supersolid

23.04.2019 | Physics and Astronomy

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>