Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover global warming linked to increase in tropopause height over past two decades

06.01.2003


Researchers at the Lawrence Livermore National Laboratory have discovered another fingerprint of human effects on global climate.



Recent research has shown that increases in the height of the tropopause over the past two decades are directly linked to ozone depletion and increased greenhouse gases.

The tropopause is the transition zone between the lowest layer of the atmosphere -- the turbulently-mixed troposphere -- and the more stable stratosphere. The tropopause lies roughly 10 miles above the Earth’s surface at the equator and five miles above the poles. To date, no scientist has examined whether observed changes in tropopause height are in accord with projections from climate model greenhouse warming experiments.


The comparison was made by Livermore scientists Benjamin Santer, James Boyle, Krishna AchutaRao, Charles Doutriaux and Karl Taylor, along with researchers from the National Center for Atmospheric Research, NASA Goddard Institute for Space Studies, the Max-Planck Institute for Meteorology and the Institut für Physik der Atmosphäre in Germany. Their findings are reported in the today’s (Jan. 3) online edition of the Journal of Geophysical Research-Atmospheres.

This research undercuts claims by greenhouse skeptics that no warming has occurred during the last two decades. Such claims are based on satellite measurements of temperatures in the troposphere, which show little or no warming since the beginning of the satellite record in 1979.

"Weather balloons and weather forecast models show that there’s been a pronounced increase in the height of the global tropopause over the last two decades," Santer said. "Our best understanding is that this increase is due to two factors: warming of troposphere, which is caused by increasing greenhouse gases, and cooling of the stratosphere, which is mainly caused by depletion of stratospheric ozone. Tropopause height changes give us independent evidence of the reality of recent warming of the troposphere."

The Livermore research supports the bottom-line conclusion of the 2001 Intergovernmental Panel on Climate Change (IPCC), which states that, "most of the observed warming over the last 50 years is likely to have been due to the increase in greenhouse gas concentrations."

Earlier research showed that changes in the Earth’s surface temperature, ocean heat content, and Northern Hemisphere sea ice cover are other indicators of human effects on climate change.

"The climate system is telling us a consistent story -- that humans have had a significant effect on it," Santer said. "We’re seeing detailed correspondence between computer climate models and observations, and this correspondence is in a number of different climate variables. Tropopause height is the latest piece of the climate-change puzzle."

To support the research, Livermore scientists examined tropopause height changes in climate-change experiments using two different computer climate models. Both models showed similar decadal-scale increases in the tropopause height in response to changes in human-caused climate forcings. The patterns of tropopause height change were similar in models and so-called ’reanalysis’ products (a combination of actual observations and results from a weather forecast model).

The model experiments focused on both manmade climate forcings, such as changes in well-mixed greenhouse gases, stratospheric and tropospheric ozone, and on natural forcings, such as changes in volcanic aerosols. The forces have varying effects on atmospheric temperature, that in turn affect tropopause height, the report concludes.


Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov/

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>