Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping with math

03.12.2002


In an unexpected meeting of the minds, two Dartmouth professors from disparate fields have come together to solve a problem: how to make accurate models of remote landscapes from photographs.


Dartmouth Professors Hany Farid (left) and Arjun Heimsath have found a way to create 3-D models of remote regions using only 2-D photographs



Arjun Heimsath, Assistant Professor of Earth Sciences, and Hany Farid, Assistant Professor of Computer Science, have found a way to create three-dimensional models of remote regions using only two-dimensional digital photographs. Once built, these models make it easier for researchers to predict landslides, erosion rates and other geomorphic events.

"It started after I got back from one of my trips to Nepal," says Heimsath. "I wasn’t able to survey the area I wanted because it was so hard to get to on foot. I’d seen Hany’s work, and I wondered if he could create the models I needed from photographs."


Usually, global positioning systems, satellite technology and other intensive surveying techniques are used to create digital elevation models, or DEMs. These methods are sometimes expensive, time consuming, or physically impossible to carry out in some parts of the world, and the equipment can be cumbersome, explains Heimsath. Farid, whose research focuses on image processing and computer vision, immediately realized he could help.

"We sketched out the idea on a napkin over lunch," says Farid. "I asked Arjun to take some photographs on his next trip, and we tested our theory within about three weeks. It didn’t really work at first, but it worked well enough to keep going."

Their collaboration resulted in a paper that appeared in the November 2002 issue of the Mathematical Geology Journal, which describes a new method to obtain DEMs, without walking through poison oak, navigating rough or unstable terrain, or hauling around big, expensive and delicate equipment.

"With our method, you breeze in with a digital camera, and with relative ease, you get the DEM," says Heimsath.

On any single photograph there is not enough information to calculate the DEM, explains Farid. But with at least three images of the same region, taken from slightly different vantage points, you can capture all the necessary data. Once the images are in the computer, the researcher has to manually pick spots on each picture that correspond, such as identifying the same shrub, the same boulder, and so on.

"After you pick somewhere between 50 and 100 points, the mathematical algorithm takes over and automatically estimates the elevation map," says Farid.

Farid explains that much of the math they utilized was developed for other applications. What he and Heimsath added were constraints unique to the surface geometry of the Earth’s surface. These constraints help to better condition or fine-tune the mathematical algorithms.

"One of the strikingly elegant aspects of our method is that you’ve got the pictures," says Heimsath, "so you know what your output is supposed to look like. If you run this model and you get something that doesn’t look like the picture, then you know you’ve done something wrong."

The algorithms are not without limitations, however. And the researchers caution that their methodology hasn’t been rigorously field tested yet. One limitation is the type of landscape being modeled. Ideally, the ground surface shouldn’t be covered in vegetation. In order for the calculations to work, the photos have to clearly illustrate the ground. Also, when taking the photos, the researcher needs a good point of view taken from a little distance away.

"It’s no good to be looking at the area you want to map from below. It’s better if you are on a hillside adjacent to the area, across the valley or on a nearby ridge," says Heimsath. Both researchers agree that it was a fun collaborative project.

"What was nice about the work, and what’s representative of Dartmouth, is that I’m taking tools from the mathematics and computer vision community," says Farid, "and applying them to a real-world problem that Arjun works on. It was just a good fit and a natural partnership. The fact that we live next door to each other helped maintain the momentum."

From the original lunch in the cafe to publication took about eight months. Farid and Heimsath say it’s probably the quickest project they’ve ever worked on. The next step is to move from theory to real-life application. Two of their students, Deane Somerville, from Sherborn, Mass., and Layne Moffett, from Tulsa, Okla., both Dartmouth undergraduates from the Class of ’05, plan to travel to New Zealand in January to test the theory. The students will go to areas that have already been surveyed by conventional methods, and take digital photos to see if the new methodology compares to what’s known. If it doesn’t, they can immediately return to the field and take some more pictures for more tests. In addition to publishing their paper in the Mathematical Geology Journal, Farid and Heimsath will present their research at the American Geophysical Union’s annual meeting in December.

Farid’s research is funded by the National Science Foundation and an Alfred P. Sloan Fellowship. Heimsath is also supported by the National Science Foundation.

SUSAN KNAPP | EurekAlert!
Further information:
http://www.dartmouth.edu/~news
http://www.dartmouth.edu/~news/releases/dec02/mathmap.shtml

More articles from Earth Sciences:

nachricht Hundreds of bubble streams link biology, seismology off Washington's coast
22.03.2019 | University of Washington

nachricht Atmospheric scientists reveal the effect of sea-ice loss on Arctic warming
11.03.2019 | Institute of Atmospheric Physics, Chinese Academy of Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Bacteria may travel thousands of miles through the air globally

25.03.2019 | Life Sciences

Key evidence associating hydrophobicity with effective acid catalysis

25.03.2019 | Life Sciences

Drug diversity in bacteria

25.03.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>