Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change may become major player in ozone loss

05.06.2002


While industrial products like chlorofluorocarbons are largely responsible for current ozone depletion, a NASA study finds that by the 2030s climate change may surpass chlorofluorocarbons (CFCs) as the main driver of overall ozone loss.



Drew Shindell, an atmospheric scientist from NASA’s Goddard Institute for Space Studies (GISS) and Columbia University, N.Y., finds that greenhouse gases like methane and carbon dioxide are changing the climate in many ways. Some of those effects include water vapor increases and temperature changes in the upper atmosphere, which may delay future ozone recovery over heavily populated areas.

Scientists have expected the ozone layer to recover as a result of international agreements to ban CFCs that destroy ozone. CFCs, once used in cooling systems and aerosols, can last for decades in the upper atmosphere, where they break down, react with ozone, and destroy it. They remain the major cause of present-day ozone depletion.


"It’s hard to tell if those great international agreements [to ban CFCs] work if we don’t understand the other big things that are going on in the stratosphere, such as increases in greenhouse gases and water vapor," Shindell said. The stratosphere is a dry atmospheric layer between 6 and 30 miles (9.7 and 48.3 kilometers) up where most ozone exists.

Ozone shields the planet’s surface from the Sun’s harmful ultraviolet radiation and makes life on Earth possible. The study examined the ozone layer over heavily populated areas around the equator and mid-latitudes where ozone thinning occurs, excluding the Polar regions, where ’ozone holes’ form.

Ozone thinning can occur when increased emissions of methane get transformed into water in the stratosphere. At high altitudes, water vapor can be broken down into molecules that destroy ozone.

Also, methane and carbon dioxide change our climate by trapping heat in the atmosphere before it can escape out to space. This greenhouse effect, much like the inside of a car with all the windows closed, heats the air within the lowest layer of the atmosphere, called the troposphere. Warming in the troposphere can alter atmospheric circulation and make the air wetter, since warmer air holds more water. Though complex and not well understood, there is evidence that water vapor can get wafted from the troposphere into the stratosphere by shifting air currents caused by climate change.

Climate change from greenhouse gases can also affect ozone by heating the lower stratosphere where most of the ozone exists. When the lower stratosphere heats, chemical reactions speed up, and ozone gets depleted.

The chemical and atmospheric processes in the lower stratosphere are complex, quite variable, and not well understood. Shindell focused his study largely on the upper stratosphere where processes are simpler and better understood, and then used those findings to make inferences about ozone in the lower stratosphere.

Computer model simulations were used to separate the different factors that contribute to ozone changes. According to the models, which contain some uncertainty, ozone levels are expected to reach their lowest point in recorded history by around 2006. Scientists hope that by banning CFCs, ozone will eventually return to healthier levels, like those that existed prior to 1979.

One simulation isolated the impacts of CFCs on ozone, and showed that as CFCs decline, by the year 2040 overall ozone makes close to a full recovery from current low levels. When CFCs, water vapor and temperature changes were all combined in a computer model, by 2040, overall ozone levels recovered only slightly from their current low point.

These computer simulations suggest that climate change from greenhouse gases may greatly slow any anticipated ozone recovery. Shindell said the effects of climate change need to be better accounted for as scientists and others try to track the success of international agreements, like the 1987 Montreal Protocol that banned CFCs.


The paper appears in the latest issue of the Journal of Geophysical Research - Atmospheres.

The study was supported by NASA’s Atmospheric Chemistry Modeling and Analysis Program, and a NASA Earth Observing System postdoctoral Fellowship. Some of the data used was obtained from the NASA Langley Research Center’s EOSDIS Distributed Active Archive Center.

Krishna Ramanujan | EurekAlert
Further information:
http://www.gsfc.nasa.gov/topstory/20020422greengas.html

More articles from Earth Sciences:

nachricht Upwards with the “bubble shuttle”: How sea floor microbes get involved with methane reduction in the water column
27.05.2020 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht An international team including scientists from MARUM discovered ongoing and future tropical diversity decline
26.05.2020 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New 5G switch provides 50 times more energy efficiency than currently exists

27.05.2020 | Information Technology

Return of the Blob: Surprise link found to edge turbulence in fusion plasma

27.05.2020 | Physics and Astronomy

Upwards with the “bubble shuttle”: How sea floor microbes get involved with methane reduction in the water column

27.05.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>