Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Redwood trees reveal history of West Coast rain, fog, ocean conditions

30.10.2013
Many people use tree ring records to see into the past. But redwoods – the iconic trees that are the world’s tallest living things – have so far proven too erratic in their growth patterns to help with reconstructing historic climate.

A University of Washington researcher has developed a way to use the trees as a window into coastal conditions, using oxygen and carbon atoms in the wood to detect fog and rainfall in previous seasons.


Michael Schweppe / Flickr

Coastal redwoods in Northern California use fog as a water source, incorporating the molecules in their trunks.

“This is really the first time that climate reconstruction has ever been done with redwoods,” said Jim Johnstone, who recently completed a postdoctoral position at the UW-based Joint Institute for the Study of the Atmosphere and the Ocean. He is corresponding author of a study published online Oct. 24 in the Journal of Geophysical Research-Biogeosciences.

While coastal redwoods are not the longest-lived trees on the West Coast, they do contain unique information about their foggy surroundings.

“Redwoods are restricted to a very narrow strip along the coastline,” Johnstone said. “They’re tied to the coastline, and they’re sensitive to marine conditions, so they actually may tell you more about what’s happening over the ocean than they do about what’s happening over land.”

The new study used cores from Northern California coastal redwoods to trace climate back 50 years. Weather records from that period prove the method is accurate, suggesting it could be used to track conditions through the thousand or more years of the redwoods’ lifetime.

Tree-ring research, or dendrochronology, typically involves a detailed look at a cross-section of a tree trunk. But the rings of a redwood are uneven and don’t always fully encircle the tree, making it a poor candidate for anything except detecting historic fires.

The new paper uses a painstaking approach that’s more like processing ice cores. It uses the molecules captured in the wood to sample the atmosphere of the past.

Most oxygen in Earth’s atmosphere has an atomic mass of 16, making it O-16, but a small percentage of oxygen is the heavier O-18 isotope. When seawater evaporates off the ocean to form clouds, some drops fall as rain over the ocean, and more of the heavier O-18 molecules rain out. The remaining drops that fall on land thus have a higher proportion of the lighter O-16 molecules.

Fog, on the other hand, forms near shore and blows on land where it drips down through the branches until the trees use it like rainwater.

By looking at the proportion of O-16 and O-18 in the wood from each season, the team was able to measure the contribution of fog and rain. They looked at the spring growth, from April to June, as well as the fall growth, from August to October. Researchers also analyzed carbon atoms to measure the total amount of moisture in the air.

“We actually have two indicators that we can use in combination to determine if a particular summer was foggy with a little rain, foggy with a lot of rain, and various combinations of the two,” Johnstone said.

Related research by Johnstone shows that the amount of West Coast fog is closely tied to the surface temperature of the ocean, so redwoods may be able to tell us something about the long-term patterns of ocean change, such as the Pacific Decadal Oscillation. Understanding of the natural variability cycles could also help to better distinguish natural and human-caused climate change.

“It’s possible that the redwoods could give us direct indication of how that’s worked over longer periods,” Johnstone said. “This is just a piece that contributes to that understanding in a pretty unique place.”

Johnstone conducted the research as part of his doctoral work at the University of California, Berkeley, where he was advised by co-author Todd Dawson. The other co-author is John Roden at Southern Oregon University. The research was funded by the National Science Foundation.

For more information, contact Johnstone at jajstone@gmail.com.

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu

Further reports about: Ocean Conditions Redwood carbon atom coastal conditions redwood trees

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>