Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Redwood trees reveal history of West Coast rain, fog, ocean conditions

30.10.2013
Many people use tree ring records to see into the past. But redwoods – the iconic trees that are the world’s tallest living things – have so far proven too erratic in their growth patterns to help with reconstructing historic climate.

A University of Washington researcher has developed a way to use the trees as a window into coastal conditions, using oxygen and carbon atoms in the wood to detect fog and rainfall in previous seasons.


Michael Schweppe / Flickr

Coastal redwoods in Northern California use fog as a water source, incorporating the molecules in their trunks.

“This is really the first time that climate reconstruction has ever been done with redwoods,” said Jim Johnstone, who recently completed a postdoctoral position at the UW-based Joint Institute for the Study of the Atmosphere and the Ocean. He is corresponding author of a study published online Oct. 24 in the Journal of Geophysical Research-Biogeosciences.

While coastal redwoods are not the longest-lived trees on the West Coast, they do contain unique information about their foggy surroundings.

“Redwoods are restricted to a very narrow strip along the coastline,” Johnstone said. “They’re tied to the coastline, and they’re sensitive to marine conditions, so they actually may tell you more about what’s happening over the ocean than they do about what’s happening over land.”

The new study used cores from Northern California coastal redwoods to trace climate back 50 years. Weather records from that period prove the method is accurate, suggesting it could be used to track conditions through the thousand or more years of the redwoods’ lifetime.

Tree-ring research, or dendrochronology, typically involves a detailed look at a cross-section of a tree trunk. But the rings of a redwood are uneven and don’t always fully encircle the tree, making it a poor candidate for anything except detecting historic fires.

The new paper uses a painstaking approach that’s more like processing ice cores. It uses the molecules captured in the wood to sample the atmosphere of the past.

Most oxygen in Earth’s atmosphere has an atomic mass of 16, making it O-16, but a small percentage of oxygen is the heavier O-18 isotope. When seawater evaporates off the ocean to form clouds, some drops fall as rain over the ocean, and more of the heavier O-18 molecules rain out. The remaining drops that fall on land thus have a higher proportion of the lighter O-16 molecules.

Fog, on the other hand, forms near shore and blows on land where it drips down through the branches until the trees use it like rainwater.

By looking at the proportion of O-16 and O-18 in the wood from each season, the team was able to measure the contribution of fog and rain. They looked at the spring growth, from April to June, as well as the fall growth, from August to October. Researchers also analyzed carbon atoms to measure the total amount of moisture in the air.

“We actually have two indicators that we can use in combination to determine if a particular summer was foggy with a little rain, foggy with a lot of rain, and various combinations of the two,” Johnstone said.

Related research by Johnstone shows that the amount of West Coast fog is closely tied to the surface temperature of the ocean, so redwoods may be able to tell us something about the long-term patterns of ocean change, such as the Pacific Decadal Oscillation. Understanding of the natural variability cycles could also help to better distinguish natural and human-caused climate change.

“It’s possible that the redwoods could give us direct indication of how that’s worked over longer periods,” Johnstone said. “This is just a piece that contributes to that understanding in a pretty unique place.”

Johnstone conducted the research as part of his doctoral work at the University of California, Berkeley, where he was advised by co-author Todd Dawson. The other co-author is John Roden at Southern Oregon University. The research was funded by the National Science Foundation.

For more information, contact Johnstone at jajstone@gmail.com.

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu

Further reports about: Ocean Conditions Redwood carbon atom coastal conditions redwood trees

More articles from Earth Sciences:

nachricht Volcanoes and glaciers combine as powerful methane producers
20.11.2018 | Lancaster University

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>