Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016

At two miles long and five inches in diameter, the West Antarctic Ice Sheet Divide (WAIS) ice core is a tangible record of the last 68,000 years of our planet's climate.

Completed in 2011, the core is packed with information, but it's also packed with noise and error, making the climate story hard to read. Figuring out whether blips in the data are evidence of humans spewing carbon into the atmosphere, odd North Atlantic weather events, or equipment malfunctions often challenges the scientists trying to read the ice cylinder's story.


This is a section of the West Antarctic Ice Sheet ice core sample with a dark ash layer.

Image courtesy Heidi Roop

Drawing from information theory, a research team led by Santa Fe Institute Omidyar Fellow Joshua Garland has proposed new, more sophisticated techniques that promise to make ongoing interpretation of the WAIS core easier and extract new kinds of data that could change the way we think about Earth's climate.

"There is information in these records that we didn't know existed until now, and it has opened doors where we didn't even know there was a door before," says James W.C. White, director of the Institute of Arctic and Alpine Research and a collaborator on the project.

In the first application of the new technique, Garland, White, and team focus on stable water isotopes present in the ice, the mix of which is a good proxy for nearby sea-surface temperatures at the time ice formed and, therefore, a good way to track climate change over thousands of years. Just plot the isotope mix over time, and you can see how temperatures changed.

What's harder to see, however, is whether those changes result from natural processes or external influences--say, Industrial Revolution activities. That's where information theory and something called permutation entropy come in.

In information theory, entropy is a measure of the unpredictability of information content. Permutation entropy essentially is a way to quantify the predictability of a future event.

Imagine an isolated climate system, void of game changers like supervolcanos or humans. Everything you'd need to predict the future climate would be contained in the Earth's climate history. When game changers arrive, they inject new information that couldn't have been predicted from the climate's past patterns--and that should manifest as an increase in permutation entropy (i.e., more unpredictability).

In fact, there are early signs in the WAIS record of an entropy increase roughly 10,000 years ago, at the beginning of the Holocene, suggesting human impacts on our climate began well before the Industrial Revolution.

Confirmation of that finding is pending. Meanwhile, Garland and team have already made two other surprising discoveries using their technique. The first concerns Dansgaard-Oeschger events, during which Greenland rapidly warms during glacial periods, triggering ripple effects throughout the world.

Geoscientists hypothesize that these events begin with some kind of external shock. But when Garland and team looked at another core, the North Greenland Ice Core, there didn't appear to be an increase in permutation entropy--in other words, no external shock, suggesting the events are likely part of the climate's standard operating procedure. This initial result calls for more study.

In another surprise, Garland and team discovered an anomaly in the WAIS ice-core data that had eluded others--an anomaly they eventually traced to the use of an older instrument to analyze one section of the ice core. Using the permutation entropy technique, WAIS researchers are now looking for similar anomalies deeper in the ice core.

Their paper, "A First Step Toward Quantifying the Climate's Information Production Over the Last 68,000 Years," appeared last week in Advances in Intelligent Data Analysis XV, the proceedings of the 15th International Symposium on Intelligent Data Analysis, Stockholm, Sweden, October 13-15, 2016.

Media Contact

John German
jdg@santafe.edu
505-946-2798

@sfi_news

http://www.santafe.edu

John German | EurekAlert!

Further reports about: Alpine Research Analysis glacial periods ice cores permutation temperatures

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>