Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016

At two miles long and five inches in diameter, the West Antarctic Ice Sheet Divide (WAIS) ice core is a tangible record of the last 68,000 years of our planet's climate.

Completed in 2011, the core is packed with information, but it's also packed with noise and error, making the climate story hard to read. Figuring out whether blips in the data are evidence of humans spewing carbon into the atmosphere, odd North Atlantic weather events, or equipment malfunctions often challenges the scientists trying to read the ice cylinder's story.


This is a section of the West Antarctic Ice Sheet ice core sample with a dark ash layer.

Image courtesy Heidi Roop

Drawing from information theory, a research team led by Santa Fe Institute Omidyar Fellow Joshua Garland has proposed new, more sophisticated techniques that promise to make ongoing interpretation of the WAIS core easier and extract new kinds of data that could change the way we think about Earth's climate.

"There is information in these records that we didn't know existed until now, and it has opened doors where we didn't even know there was a door before," says James W.C. White, director of the Institute of Arctic and Alpine Research and a collaborator on the project.

In the first application of the new technique, Garland, White, and team focus on stable water isotopes present in the ice, the mix of which is a good proxy for nearby sea-surface temperatures at the time ice formed and, therefore, a good way to track climate change over thousands of years. Just plot the isotope mix over time, and you can see how temperatures changed.

What's harder to see, however, is whether those changes result from natural processes or external influences--say, Industrial Revolution activities. That's where information theory and something called permutation entropy come in.

In information theory, entropy is a measure of the unpredictability of information content. Permutation entropy essentially is a way to quantify the predictability of a future event.

Imagine an isolated climate system, void of game changers like supervolcanos or humans. Everything you'd need to predict the future climate would be contained in the Earth's climate history. When game changers arrive, they inject new information that couldn't have been predicted from the climate's past patterns--and that should manifest as an increase in permutation entropy (i.e., more unpredictability).

In fact, there are early signs in the WAIS record of an entropy increase roughly 10,000 years ago, at the beginning of the Holocene, suggesting human impacts on our climate began well before the Industrial Revolution.

Confirmation of that finding is pending. Meanwhile, Garland and team have already made two other surprising discoveries using their technique. The first concerns Dansgaard-Oeschger events, during which Greenland rapidly warms during glacial periods, triggering ripple effects throughout the world.

Geoscientists hypothesize that these events begin with some kind of external shock. But when Garland and team looked at another core, the North Greenland Ice Core, there didn't appear to be an increase in permutation entropy--in other words, no external shock, suggesting the events are likely part of the climate's standard operating procedure. This initial result calls for more study.

In another surprise, Garland and team discovered an anomaly in the WAIS ice-core data that had eluded others--an anomaly they eventually traced to the use of an older instrument to analyze one section of the ice core. Using the permutation entropy technique, WAIS researchers are now looking for similar anomalies deeper in the ice core.

Their paper, "A First Step Toward Quantifying the Climate's Information Production Over the Last 68,000 Years," appeared last week in Advances in Intelligent Data Analysis XV, the proceedings of the 15th International Symposium on Intelligent Data Analysis, Stockholm, Sweden, October 13-15, 2016.

Media Contact

John German
jdg@santafe.edu
505-946-2798

@sfi_news

http://www.santafe.edu

John German | EurekAlert!

Further reports about: Alpine Research Analysis glacial periods ice cores permutation temperatures

More articles from Earth Sciences:

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

nachricht Earth's magnetic field measured using artificial stars at 90 kilometers altitude
14.11.2018 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>