Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean-drilling expedition cites new evidence related to origin and evolution of seismogenic faults

19.08.2009
NanTroSEIZE science party

New research about what triggers earthquakes, authored by Michael Strasser of Bremen University, Germany, with colleagues from the USA, Japan, China, France, and Germany, will appear in the Aug. 16 2009 issue of Nature Geoscience (online version).

The research article, titled "Origin and evolution of a splay-fault in the Nankai accretionary wedge" is drawn from the scientists' participation in the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE), a long-term scientific ocean-drilling project conducted by the Integrated Ocean Drilling Program (IODP). Since September 2007, rotating teams of scientists have spent months aboard Japan's drilling vessel, CHIKYU, investigating the Nankai Trough, a seismogenic zone located beneath the ocean off the southwest coast of Japan.

Drilling operations, managed by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) through its Center for Deep Earth Exploration, have resulted in a collection of cored samples from the sea floor, which have provided scientists with deeper insights into the geologic past of the area.

Discussion in the above-noted article focuses on the Nankai Trough, in which the Philippine Sea plate slips below the Eurasian Plate with a velocity of 4 cm per year. This area is one of the most active earthquake zones on the planet. While being subducted, sediments are scraped off the oceanic plate and added to the overriding continental plate. Due to the movement of the plates these so-called accretionary wedges are exposed to enormous stress that form large faults.

The landward wedge in the Nankai Trough is completely intersected by such a prominent fault which extends laterally over more than 120 km. Scientists refer to this structure as "the megasplay." Movements along such megasplay faults during large magnitude earthquakes generated at depth may rupture the ocean floor and generate tsunamis.

"Our knowledge of megasplay faults up till now has been based on seismic or modelling experiments accomplished over the last twenty years," says Michael Strasser of Post-Doc Fellow of the Center for Marine Environmental Sciences (MARUM) at University of Bremen. "For the first time, with cored samples brought onto the CHIKYU, it has become possible to reconstruct the geological history of a fault in great detail." With his associates, Dr. Strasser found that the fault in the Nankai Trough originated about two million years ago. From the information recorded in the cores, the research team can draw conclusions on the mechanics of the accretionary wedge. They also can infer in which geological time periods the fault was most active.

"Our most significant conclusion is that splay fault activity varies through time," Dr. Strasser states. According to Strasser, after an initial period of high activity, the movement along the fault slowed down. Since about 1.55 million years ago, this fault has been reactivated, favoring ongoing megasplay slip along it.

"It is absolutely fascinating to be part of NanTroSEIZE," says Strasser, noting that the expedition series aims to sample and monitor activity at the point where earthquakes originate. "NanTroSEIZE is something completely new and innovative in scientific drilling," Strasser explains. "Ultimately, we hope to detect signals occurring just before an earthquake to get a better understanding of the processes leading to earthquakes and tsunamis."

The Nankai Trough is particularly suited for this experiment because historical records of earthquakes and tsunamis in this area date back into the seventh century. Additionally, the area where earthquakes are generated, the so-called seismogenic zone, is located at a relatively shallow depth of about six kilometers below the seafloor.

In 2007 and 2008, during the first stage of NanTroSEIZE, the deep sea drilling vessel CHIKYU carried out three expeditions. This drilling project consists of four stages in all, and ultimately focuses on "ultra-deep" drilling that can reach the seismogenic zone, where great earthquakes have occurred repeatedly.

During upcoming expeditions, the Nankai Trough boreholes will be equipped with instruments to establish an ocean observatory network. Currently, scientists are making preparations to install monitoring devices for continous measurements of the Nankai Trough. Prof. Gaku Kimura of University of Tokyo, who led an earlier NanTroSEIZE expedition 316 as Co-Chief Scientist says, "Not only do we have new insights about historic fault activities in Nankai Trough, but the data strongly suggests that the megasplay fault may be a key factor in the occurrence of large earthquakes in the future." He adds, "Greater understanding about the processes of earthquake and tsunami generation in the active subduction zone will be a great contribution to society."

The Integrated Ocean Drilling Program (IODP) is an international marine research program dedicated to advancing scientific understanding of Earth by monitoring, sampling, and instrumenting subseafloor environments. Through multiple platforms, preeminent scientists explore the deep biosphere, environmental change, and solid Earth cycles. IODP is funded jointly by the U.S. National Science Foundation and the Japan Ministry of Education, Culture, Sports, Science and Technology, with additional support provided by the European Consortium of Ocean Research Drilling; the People's Republic of China, the Republic of Korea, Australia, India, and New Zealand. Program details and expedition reports are at www.iodp.org.

Detailed information about NanTroSEIZE can be found at www.jamstec.go.jp/chikyu/eng/Expedition/NantroSEIZE/index.html

Contacts:

Albert Gerdes
agerdes@marum.de
MARUM, Bremen University
Toru Nakamura
press@jamstec.go.jp
Manager of Press office, JAMSTEC
Raesah Et'Tawil
rettawil@iodp.org
IODP Management International

Raesah Et'Tawil | EurekAlert!
Further information:
http://www.iodp.org

More articles from Earth Sciences:

nachricht Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide
15.08.2018 | University of Washington

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>