Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural selection has altered the appearance of Europeans over the past 5,000 years

11.03.2014

Ancient DNA from archaeological skeletons shows that European’s had darker skin, hair, and eye pigmentation 5,000 years ago

There has been much research into the factors that have influenced the human genome since the end of the last Ice Age. Anthropologists at Johannes Gutenberg University Mainz (JGU) and geneticists at University College London (UCL), working in collaboration with archaeologists from Berlin and Kiev, have analyzed ancient DNA from skeletons and found that selection has had a significant effect on the human genome even in the past 5,000 years, resulting in sustained changes to the appearance of people.


Grave with an about 5,000 years old skeleton from a kurgan of the Yamnaya culture near the town Kirovograd in Ukraine.

(photo: Alla V. Nikolova)

The results of this current research project have been published this week in an article entitled "Direct evidence for positive selection of skin, hair, and eye pigmentation in Europeans during the last 5,000 years" in the journal Proceedings of the National Academy of Sciences (PNAS).

For a number of years population geneticists have been able to detect echoes of natural selection in the genomes of living humans, but those techniques are typically not very accurate about when that natural selection took place. The researchers in Mainz and London now decided to take a new approach.

... more about:
»DNA »Europeans »PNAS »altered »evidence »humans »pigmentation »skeletons »skin

This involved analyzing DNA from archaeological skeletons and then comparing the prehistoric data with that of contemporary Europeans using computer simulations. Where the genetic changes could not be explained by the randomness of inheritance, the researchers were able to infer that positive selection played a role, i.e., that frequency of a certain mutation increased significantly in a given population.

While investigating numerous genetic markers in archaeological and living individuals, Sandra Wilde of the Palaeogenetics Group at the JGU Institute of Anthropology noticed striking differences in genes associated with hair, skin, and eye pigmentation. "Prehistoric Europeans in the region we studied would have been consistently darker than their descendants today," says Wilde, first author of the PNAS article.

"This is particularly interesting as the darker phenotype seems to have been preferred by evolution over hundreds of thousands of years. All our early ancestors were more darkly pigmented." However, things must have changed in the last 50,000 years as humans began to migrate to northern latitudes.

"In Europe we find a particularly wide range of genetic variation in terms of pigmentation," adds co-author Dr. Karola Kirsanow, who is also a member of the Palaeogenetics Group at Mainz University. "However, we did not expect to find that natural selection had been favoring lighter pigmentation over the past few thousand years." The signals of selection that the Mainz palaeogeneticists and their colleagues at University College London have identified are comparable to those for malaria resistance and lactase persistence, meaning that they are among the most pronounced that have been discovered to date in the human genome. The authors see several possible explanations.

"Perhaps the most obvious is that this is the result of adaptation to the reduced level of sunlight in northern latitudes," says Professor Mark Thomas of UCL, corresponding author of the study. "Most people of the world make most of their vitamin D in their skin as a result UV exposure. But at northern latitudes and with dark skin, this would have been less efficient. If people weren’t getting much vitamin D in their diet, then having lighter skin may have been the best option."

"But this vitamin D explanation seems less convincing when it comes to hair and eye color," Wilde continues. "Instead, it may be that lighter hair and eye color functioned as a signal indicating group affiliation, which in turn played a role in the selection of a partner." Sexual selection of this kind is common in animals and may also have been one of the driving forces behind human evolution over the past few millennia.

"We were expecting to find that changes in the human genome were the result of population dynamics, such as migration. In general we expect genetic changes due to natural selection to be the exception rather than the rule. At the same time, it cannot be denied that lactase persistence, i.e., the ability to digest the main sugar in milk as an adult, and pigmentation genes have been favored by natural selection to a surprising degree over the last 10,000 years or so," adds Professor Joachim Burger, senior author of the study.

"But it should be kept in mind that our findings do not necessarily mean that everything selected for in the past is still beneficial today. The characteristics handed down as a result of sexual selection can be more often explained as the result of preference on the part of individuals or groups rather than adaptation to the environment."

Publication:
Wilde, Sandra et al.
Direct evidence for positive selection of skin, hair, and eye pigmentation in Europeans during the last 5,000 years
Proceedings of the National Academy of Sciences (PNAS), 10 March 2014
DOI: 10.1073/pnas.1316513111

Photo:
www.uni-mainz.de/bilder_presse/10_anthropologie_jamnaja_skelett.jpg
Grave with an about 5,000 years old skeleton from a kurgan of the Yamnaya culture near the town Kirovograd in Ukraine (photo: Alla V. Nikolova)

Video:
http://www.youtube.com/watch?v=Kawbj78IFV8&list=PL0F68B2B14956A8A8
This short film shows the Mainz-based palaeogeneticists at work analyzing ancient DNA from skeletons.

Further information:
Dr. Karola Kirsanow
Dipl. Biol. Sandra Wilde
Institute of Anthropology
Johannes Gutenberg University Mainz
D 55099 Mainz, GERMANY
phone +49 6131 39-23472
e-mail: kirsanow@uni-mainz.de
http://www.uni-mainz.de/FB/Biologie/Anthropologie/MolA/English/Home/Home.html

Weitere Informationen:

http://beanproject.eu/
http://www.uni-mainz.de/FB/Biologie/Anthropologie/MolA/English/Home/Home.html
http://www.ucl.ac.uk/mace-lab/people/mark

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: DNA Europeans PNAS altered evidence humans pigmentation skeletons skin

More articles from Earth Sciences:

nachricht Most of Earth's carbon was hidden in the core during its formative years
02.04.2020 | Smithsonian

nachricht A sensational discovery: Traces of rainforests in West Antarctica
02.04.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

 
Latest News

Capturing 3D microstructures in real time

03.04.2020 | Materials Sciences

First SARS-CoV-2 genomes in Austria openly available

03.04.2020 | Life Sciences

Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch

03.04.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>