Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA watches Tropical Storm Florence develop and weaken

07.08.2012
The sixth tropical storm of the Atlantic Ocean hurricane season formed over the past weekend, and NASA kept an on its progression. Tropical Storm Florence was born in the eastern Atlantic and weakened when it interacted with dry air.

On Friday, August 3, the low pressure area known as "System 90L" was being watched for development. It was located south of the Cape Verde Islands off the African coast. By the early evening (Eastern Daylight Time) it quickly organized. System 90L strengthened and became Tropical Storm Florence in the eastern Atlantic. Over August 4 and 5 Florence traveled west and weakened back to a tropical depression by August 6.


The AIRS instrument that flies on NASA's Aqua satellite captured these infrared images of Florence on Aug. 4-5. The AIRS image from Aug. 4 showed a larger spiraled storm. By Aug. 5 when dry air started interacting with the system the area of stronger thunderstorms had diminished and the storm had a tight, small area of strong, high, cold cloud tops of thunderstorms around the center of circulation.

Credit: NASA/JPL, Ed Olsen

NASA's Aqua satellite passed over Tropical Storm Florence on August 4 and 5. The Atmospheric Infrared Sounder (AIRS) instrument onboard the satellite captured infrared images of the storm on both days. The AIRS image from Aug. 4 showed a larger spiraled storm. By Aug. 5 when dry air started interacting with the system the area of stronger thunderstorms had diminished and the storm had a tight, small area of strong, high, cold cloud tops of thunderstorms around the center of circulation.

On August 6 at 0900 UTC (5 a.m. EDT), Florence's maximum sustained winds were near 35 mph (55 kmh) with higher gusts. At 5 a.m. EDT the center of tropical depression Florence was located near latitude 16.2 north and longitude 38.8 west. Florence is moving toward the west near 12 mph (19 kmh). The depression is expect to move in a westward or west-northwestward motion and speed up over the next couple of days.

After Florence became a tropical storm she ran into dry air and Saharan dust, according to the National Hurricane Center (NHC). At 5 a.m. EDT on Monday, August 6, the NHC noted "the cyclone has been devoid of deep convection for about six hours as dry air has become well embedded in the circulation."

Forecasters at the National Hurricane Center expect Florence to track west across the Atlantic and south of Bermuda. On her western track, Florence is expected to degenerate to a remnant low within the next couple of days, because wind shear will increase from the west and batter the storm. Florence became a post-tropical storm on August 6 at 11 a.m. EDT as its winds dropped to 35 mph (55 kmh). It was located near latitude 16.4 north and longitude 40.2 west. Florence is expected to weaken further over the next couple of days.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Wintertime Arctic sea ice growth slows long-term decline: NASA
07.12.2018 | NASA/Goddard Space Flight Center

nachricht Why Tehran Is Sinking Dangerously
06.12.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>