Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine plankton brighten clouds over Southern Ocean

27.07.2015

New research using NASA satellite data and ocean biology models suggests tiny organisms in vast stretches of the Southern Ocean play a significant role in generating brighter clouds overhead. Brighter clouds reflect more sunlight back into space affecting the amount of solar energy that reaches Earth's surface, which in turn has implications for global climate. The results were published July 17 in the journal Science Advances.

The study shows that plankton, the tiny drifting organisms in the sea, produce airborne gases and organic matter to seed cloud droplets, which lead to brighter clouds that reflect more sunlight.


Satellites use chlorophyll's green color to detect biological activity in the oceans. The lighter-green swirls are a massive December 2010 plankton bloom following ocean currents off Patagonia, at the southern tip of South America.

Credits: NASA's Earth Observatory

"The clouds over the Southern Ocean reflect significantly more sunlight in the summertime than they would without these huge plankton blooms," said co-lead author Daniel McCoy, a University of Washington doctoral student in atmospheric sciences. "In the summer, we get about double the concentration of cloud droplets as we would if it were a biologically dead ocean."

Although remote, the oceans in the study area between 35 and 55 degrees south is an important region for Earth's climate. Results of the study show that averaged over a year, the increased brightness reflects about 4 watts of solar energy per square meter.

McCoy and co-author Daniel Grosvenor, now at the University of Leeds, began this research in 2014 looking at NASA satellite data for clouds over the parts of the Southern Ocean that are not covered in sea ice and have year-round satellite data. The space agency launched the first Moderate Resolution Imaging Spectroradiometer (MODIS), instrument onboard the Terra satellite in 1999 to measure the cloud droplet size for all Earth's skies. A second MODIS instrument was launched onboard the Aqua satellite in 2002.

Clouds reflect sunlight based on both the amount of liquid suspended in the cloud and the size of the drops, which range from tiny mist spanning less than a hundredth of an inch (0.1 millimeters) to large drops about half an inch (10 millimeters) across. Each droplet begins by growing on an aerosol particle, and the same amount of liquid spread across more droplets will reflect more sunlight.

Using the NASA satellite data, the team showed in 2014 that Southern Ocean clouds are composed of smaller droplets in the summertime. But that doesn't make sense, since the stormy seas calm down in summer and generate less sea spray to create airborne salts.

The new study looked more closely at what else might be making the clouds more reflective. Co-lead author Susannah Burrows, a scientist at the Pacific Northwest National Lab in Richland, Washington, used an ocean biology model to see whether biological matter could be responsible.

Marine life can affect clouds in two ways. The first is by emitting a gas, such as dimethyl sulfide released by Sulfitobacter bacteria and phytoplankton such as coccolithophores, which creates the distinctive sulfurous smell of the sea and also produces particles to seed marine cloud droplets.

The second way is directly through organic matter that collects at the water's surface, forming a bubbly scum that can get whipped up and lofted into the air as tiny particles of dead plant and animal material.

By matching the cloud droplet concentration with ocean biology models, the team found correlations with the sulfate aerosols, which in that region come mainly from phytoplankton, and with the amount of organic matter in the sea spray.

"The dimethyl sulfide produced by the phytoplankton gets transported up into higher levels of the atmosphere and then gets chemically transformed and produces aerosols further downwind, and that tends to happen more in the northern part of the domain we studied," Burrows said. "In the southern part of the domain there is more effect from the organics, because that's where the big phytoplankton blooms happen."

Taken together, these two mechanisms roughly double the droplet concentration in summer months.

The Southern Ocean is a unique environment for studying clouds. Unlike in other places, the effects of marine life there are not swamped out by aerosols from forests or pollution. The authors say it is likely that similar processes could occur in the Northern Hemisphere, but they would be harder to measure and may have a smaller effect since aerosol particles from other sources are so plentiful.

###

The research was funded by NASA, the U.S. Department of Energy and a graduate fellowship from the Air Force Office of Scientific Research.

Read the paper at Science Advances: advances.sciencemag.org/content/1/6/e1500157

Ellen Gray | EurekAlert!

More articles from Earth Sciences:

nachricht Ten-year anniversary of the Neumayer Station III
18.01.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht The pace at which the world’s permafrost soils are warming
16.01.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>