Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic Leaves Reveal Most Polluted Byways

19.10.2009
Tree leaves may be powerful tools for monitoring air quality and planning biking routes and walking paths, suggests a new study by scientists at Western Washington University in Bellingham, WA, USA. The research will be presented at this month's Annual Meeting of the Geological Society of America in Portland, Oregon.

Leaves along bus routes were up to 10 times more magnetic than leaves on quieter streets, the study found. That magnetism comes from tiny particles of pollution—such as iron oxides from diesel exhaust—that float through the air and either stick to leaves or grow right into them.

Geophysicist Bernie Housen and colleague Luigi Jovane collected several leaves from 15 trees in and around Bellingham. Five of the trees lay next to busy bus routes. Five sat on parallel but much quieter side streets. Five were in a rural area nearby.

Using two measurement techniques, Housen and Jovane found that leaves along bus routes were between two and 8 times more magnetic than leaves from nearby streets and between four and 10 times more magnetic than rural leaves.

Inhaling particulate matter has been linked to a number of negative health consequences, including breathing troubles and even heart problems. Tiny particles bypass the airways and get deep into the lung tissues.

The new study suggests that biking or walking along heavy bus routes might be as bad for your health as you might suspect when choking on exhaust fumes. That’s something cities might want to consider as they plan new routes for cyclists and pedestrians.

“I ride my bike to work every day,” Housen said. “I’ve always wondered what the effects of diesel exhaust are on my health.”

While many details remain to be worked out, the study also suggests that collecting tree leaves can be a simple and effective way to measure the load of particulate matter in the air. European researchers have been exploring the idea for a while, but this is one of the first studies to apply the technique in the United States.

“Using trees is a nice, low-tech way to do these studies and you don’t need to use fancy particle collectors,” Housen said. “If it works, you could easily collect a lot of data from a region. You could even have kids collect leaves. That makes it a powerful tool to see variation of particulate matter on a very detailed level.”

**WHEN & WHERE**

Monitoring impacts of mass-transit vehicles on particulate matter concentrations in urban environments using magnetic properties of tree leaves: Pilot study of bus and bike routes in Bellingham, WA
Sunday, 18 October 2009, 11:15-11:30 a.m.
Oregon Convention Center, Portland Ballrooms 251/258
View abstract at http://gsa.confex.com/gsa/2009AM/finalprogram/abstract_164610.htm.

**CONTACT INFORMATION**

For on-site assistance during the 2009 Annual Meeting, 18-21 October, contact Christa Stratton in the Newsroom (7:30 a.m.-6:00 p.m. PDT), Oregon Convention Center, Room D133, +1-503-963-5708.

After the meeting contact:
Bernie Housen
Western Washington University, Geology Dept.
360-650-6573 (office)
bernieh@wwu.edu
http://myweb.facstaff.wwu.edu/bernieh/
**IMAGES AVAILABLE**
Images available at www.geosociety.org/news/pr/09-53.htm
For more information on the 2009 Meeting, visit http://www.geosociety.org/meetings/2009/.

Christa Stratton | Newswise Science News
Further information:
http://www.geosociety.org

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>