Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Injecting sulfate particles into stratosphere won't fully offset climate change

26.01.2012
As the reality and the impact of climate warming have become clearer in the last decade, researchers have looked for possible engineering solutions – such as removing carbon dioxide from the atmosphere or directing the sun's heat away from Earth – to help offset rising temperatures.

New University of Washington research demonstrates that one suggested method, injecting sulfate particles into the stratosphere, would likely achieve only part of the desired effect, and could carry serious, if unintended, consequences.

The lower atmosphere already contains tiny sulfate and sea salt particles, called aerosols, that reflect energy from the sun into space. Some have suggested injecting sulfate particles directly into the stratosphere to enhance the effect, and also to reduce the rate of future warming that would result from continued increases in atmospheric carbon dioxide.

But a UW modeling study shows that sulfate particles in the stratosphere will not necessarily offset all the effects of future increases in atmospheric carbon dioxide.

Additionally, there still is likely to be significant warming in regions where climate change impacts originally prompted a desire for geoengineered solutions, said Kelly McCusker, a UW doctoral student in atmospheric sciences.

The modeling study shows that significant changes would still occur because even increased aerosol levels cannot balance changes in atmospheric and oceanic circulation brought on by higher levels of atmospheric carbon dioxide.

"There is no way to keep the climate the way it is now. Later this century, you would not be able to recreate present-day Earth just by adding sulfate aerosols to the atmosphere," McCusker said.

She is lead author of a paper detailing the findings published online in December in the Journal of Climate. Coauthors are UW atmospheric sciences faculty David Battisti and Cecilia Bitz.

Using the National Center for Atmospheric Research's Community Climate System Model version 3 and working at the Texas Advanced Computing Center, the researchers found that there would, in fact, be less overall warming with a combination of increased atmospheric aerosols and increased carbon dioxide than there would be with just increased carbon dioxide.

They also found that injecting sulfate particles into the atmosphere might even suppress temperature increases in the tropics enough to prevent serious food shortages and limit negative impacts on tropical organisms in the coming decades.

But temperature changes in polar regions could still be significant. Increased winter surface temperatures in northern Eurasia could have serious ramifications for Arctic marine mammals not equipped to adapt quickly to climate change. In Antarctic winters, changes in surface winds would also bring changes in ocean circulation with potentially significant consequences for ice sheets in West Antarctica.

Even with geoengineering, there still could be climate emergencies – such as melting ice sheets or loss of polar bear habitat – in the polar regions, the scientists concluded. They added that the odds of a "climate surprise" would be high because the uncertainties about the effects of geoengineering would be added to existing uncertainties about climate change.

The research was funded by the Tamaki Foundation and the National Science Foundation.

For more information, contact McCusker at kelly@atmos.washington.edu

Vince Stricherz | EurekAlert!
Further information:
http://www.uw.edu

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>