Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glaciers in Tibet – never really large

04.06.2010
The Tibetan Plateau is the largest and highest mountain region on Earth with glaciers whose meltwater provides the water supply for more than 1.3 billion people through several of the largest rivers in Asia.

In a thesis in Physical Geography from Stockholm University, Jakob Heyman shows that the glaciers in Tibet have remained relatively small and have not been much larger than today for tens of thousands to hundreds of thousands of years back in time.

The study deals with the growth and decay of glaciers in Tibet far back in time, with the aim of attaining better knowledge of glaciations and their link to climate variations. The results show that the glaciers in Tibet have varied in size but that they have been fairly small far back in time.

In several places the glaciers seems to have been similar in size to today’s glaciers or just slightly larger during the entire last Ice Age. Considering that Tibet, often called the roof of the world or the third pole, is where the largest number of glaciers outside the polar regions are located, this is remarkable.

“At the same time as huge ice sheets covered northern Europe and North America during the last Ice Age twenty thousand years ago, the glaciers in Tibet were not much larger than today,” says Jakob Heyman.

The field data can be used, together with a mathematical model for the growth of a glacier, to find out how large the climatic variations have been during the last Ice Age. Preliminary results show that the climate was probably somewhat colder than today but was nevertheless relatively stable.

“If today’s temperature in Tibet were to decrease by five degrees or more, which is not much for an Ice Age cycle, a large ice sheet would probably start growing. No ice sheet seems to have existed in Tibet, and the cooling can therefore not have been that strong,” says Jakob Heyman.

To determine how large the glaciers have been, satellite images have been used to find landforms created by former glaciers, and field studies have been performed to find sediments and erratic boulders deposited during past glaciations. To find out when the ice disappeared, samples have been collected from boulders left by the ice and the number of particular isotopes formed in quartz when hit by cosmic rays has been measured. Because the cosmic ray intensity is known, the number of isotopes can be used to calculate the age for when the boulders were melted out of the ice.

Title of dissertation: Palaeoglaciology of the northeastern Tibetan Plateau

For more information
Jakob Heyman, Department of Physical Geography and Quaternary Geology, Stockholm University, tel +46 730-521979, +46 8-164787, e-mail jakob.heyman@natgeo.su.se

Pressofficer Maria Skuldt, maria.skuldt@kommunikation.su.se; +46-722 333 385

Maria Skuldt | idw
Further information:
http://su.diva-portal.org/smash/record.jsf?pid=diva2:312664
http://www.su.se/pub/jsp/polopoly.jsp?d=12201&a=80574

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>