Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gas hydrate research: Advanced knowledge and new technologies

23.03.2018

After ten years, the SUGAR project concludes with a conference in Potsdam

Gas hydrates are ice-like compounds of water molecules with gases such as methane. They occur in large quantities in the continental slopes of ocean margins. Due to the enclosed methane, they are considered a potential source of energy.


Gas hydrates are nicknamed "burning ice" because of the trapped methane.

Geomar/Science Party SO174


This reservoir simulator permits the formation of gas hydrates in sediments under realistic conditions as well as the test of production methods.

GFZ

Funded by the Federal Ministry of Economics and the Federal Ministry of Research, and coordinated at the GEOMAR Helmholtz Centre for Ocean Research Kiel, the SUGAR (“Submarine Gas Hydrate Deposits”) project has significantly expanded the basic knowledge of gas hydrates over the past ten years.

The project has seen the development of new technologies for gas hydrate exploration, production and associated environmental monitoring. Now the project is concluding with a final conference at the Helmholtz Centre Potsdam - GFZ German Research Center for Geosciences.

Until the end of the 20th century, gas hydrates were considered a rare curiosity. The ice-like compounds of water molecules, including methane and other gases, unintentionally appeared, for example, in gas pipelines. It was not until the 1990s that German and international scientists revealed that the continental slopes on all ocean margins contain large deposits of this substance. In addition to basic research, the question soon arose: can the methane from hydrates be used as an energy resource?

Germany's coasts border seas where water depths are too shallow for the formation of gas hydrates. If gas hydrates were to gain economic importance, Germany could only participate in the market as a technology supplier. Therefore, starting in 2008 the Federal Ministry of Economics and the Federal Ministry of Research have been funding the joint academic-industry project "Submarine Gas Hydrate Reservoirs" (SUGAR).

After almost ten years, SUGAR is finishing this week with a conference at the Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences. “The SUGAR consortium has achieved a great deal during this time. It has significantly expanded knowledge of gas hydrates in the seafloor and developed technologies that are now in demand worldwide,” says project coordinator Dr. Matthias Haeckel from the GEOMAR Helmholtz Centre for Ocean Research Kiel.

The demand for these technologies is highest in Asian countries. Both Japan and China completed successful test production of methane from submarine hydrate deposits last year. India, South Korea and Taiwan are also very interested in starting their own field tests. Companies from Germany participating in the SUGAR project have been able to develop technologies for environmental monitoring in recent years. These include special echosounders, which can detect methane gas bubbles seeping unintentionally out of the seafloor, or sensors that can measure methane concentrations in the water column.

“Even the question of where gas hydrates actually occur and in what quantities, we are able to answer more precisely now than at the beginning of SUGAR. There were major leaps in knowledge in this area, among other things thanks to better computer simulations of processes in the seafloor and high-resolution imaging of the seabed down to a depth of 500 meters,” explains Prof. Dr. Klaus Wallmann from GEOMAR, who served as coordinator during the first two phases of the project until mid-2014.

Another example of technology developed within SUGAR is the reservoir simulator LARS (LArge Reservoir Simulator) at the GFZ. It is a 425-liter steel tank equipped with numerous sensors. In this tank, gas hydrates can be formed in sediments under nature-like conditions. "With LARS we can test various methods for the extraction of methane from natural gas hydrate deposits on a technical scale," says Dr. Judith Schicks, head of the working group ‘gas hydrate research’ at the GFZ.

Basic research also benefits from such experimental facilities. Even after the end of the SUGAR project, gas hydrates are still interesting for scientists in Germany and worldwide. “Among other things, we want to find out whether they can cause landslides and tsunamis if they are destabilized as a result of ocean warming,” explains Dr. Haeckel.

In addressing these issues, basic science has benefited from the insights and developments of the SUGAR project. “Better modelling of the seafloor or high-pressure test units for investigating gas hydrate dynamics in sediments will give new insights into the risk of landslides. Mobile drilling technology, developed within SUGAR, allows for cost-efficient recovery of necessary natural gas hydrate samples while retaining ambient pressure,” explains Dr. Haeckel.

Note:
The joint SUGAR project was funded by the Federal Ministry of Economics and Technology and the Federal Ministry of Education and Research, with a total of 31 million euros in three phases (2008-2011, 2011-2014, 2014-2018).

Links:
www.geomar.de GEOMAR Helmholtz Centre for Ocean Research Kiel
www.gfz-potsdam.de Helmholtz Centre Potsdam - German Research Center for Geosciences
www.sugar-projekt.de SUGAR project

Images:
At www.geomar.de/n5809-e images are available for download.

Contact:
Jan Steffen (GEOMAR, Communication and Media), Tel.:+49 0431 600-2811, presse@geomar.de
Ralf Nestler (GFZ, Media and Communication), Tel.: +49 331 288-1049, presse@gfz-potsdam.de

Ralf Nestler | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

More articles from Earth Sciences:

nachricht Atmospheric scientists reveal the effect of sea-ice loss on Arctic warming
11.03.2019 | Institute of Atmospheric Physics, Chinese Academy of Sciences

nachricht Sensing shakes
11.03.2019 | University of Tokyo

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

To proliferate or not to proliferate

21.03.2019 | Life Sciences

Magnetic micro-boats

21.03.2019 | Physics and Astronomy

Motorless pumps and self-regulating valves made from ultrathin film

21.03.2019 | HANNOVER MESSE

VideoLinks
Science & Research
Overview of more VideoLinks >>>