Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evidence points to widespread loss of ocean oxygen by 2030s

02.05.2016

Deoxygenation due to climate change threatens marine life

Climate change has caused a drop in the amount of oxygen dissolved in the oceans in some parts of the world, and those effects should become evident across large parts of the ocean between 2030 and 2040, according to a new study led by researchers at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado.


By the 2030s, declining oxygen levels will likely be evident in many of the world's oceans.

Credit; NCAR

Scientists expected a warming climate to sap oceans of oxygen, leaving fish, crabs, squid, sea stars, and other marine life struggling to breathe. But they had encountered difficulties in determining whether this anticipated oxygen drain was already having a noticeable effect.

"Loss of oxygen in the oceans is one of the serious side effects of a warming atmosphere, and a major threat to marine life," said NCAR scientist Matthew Long, lead author of the study. "Since oxygen concentrations in the ocean naturally vary depending on variations in winds and temperature at the surface, it's been challenging to attribute any deoxygenation to climate change. This new study tells us when we can expect the effect from climate change to overwhelm the natural variability."

The study is published in the American Geophysical Union journal Global Biogeochemical Cycles. The research was funded by the National Science Foundation (NSF).

Cutting through the natural variability

The entire ocean -- from the depths to the shallows -- gets its oxygen supply from the surface, either from the atmosphere or from phytoplankton, which release oxygen into the water through photosynthesis.

Warming surface waters, however, absorb less oxygen. And, in a double whammy, the absorbed oxygen has a more difficult time traveling deeper into the ocean. That's because as water heats up, it expands, becoming lighter than the water below it and less likely to sink.

Thanks to natural warming and cooling, oxygen concentrations at the sea's surface change constantly -- and deeper in the ocean, those changes can linger for years or decades.

For example, an exceptionally cold winter in the North Pacific would allow the ocean surface to soak up a large amount of oxygen. Thanks to the natural circulation pattern, that oxygen would then be carried deeper into the ocean, where it might still be detectable years later as it travels along its flow path.

On the flip side, unusually hot weather could lead to "dead zones" in the ocean, where fish and other marine life cannot survive.

To cut through this natural variability and investigate the impact of climate change, the research team -- including Curtis Deutsch of the University of Washington and Taka Ito of Georgia Tech -- relied on the NCAR-based Community Earth System Model, which is funded by NSF and the U.S. Department of Energy.

"This study shows how far comprehensive Earth System Models have come in the effort to quantify, along with relatively sparse observations, large-scale changes in oxygen in the oceans due to both natural variability and climate change," said Eric Itsweire, program director in NSF's Division of Ocean Sciences.

The scientists used output from a project that ran the model more than two dozen times for the years 1920 to 2100. Each individual run started with miniscule variations in air temperature. As the model runs progressed, those tiny differences grew and expanded, producing a set of climate simulations useful for studying questions about variability and change.

Using the simulations to study dissolved oxygen gave the researchers guidance on the degree to which concentrations may have varied naturally in the past. With this information, they could determine when ocean deoxygenation due to climate change is likely to become more severe than at any point in the modeled historic range.

The researchers found they could already detect deoxygenation caused by climate change in the southern Indian Ocean and parts of the eastern tropical Pacific and Atlantic basins.

They also determined that more widespread detection of deoxygenation caused by climate change would be possible between 2030 and 2040.

However, in some parts of the ocean, including areas off the east coasts of Africa, Australia, and Southeast Asia, deoxygenation caused by climate change would not become evident even by 2100.

Detecting a global pattern

The researchers also created a visual way to distinguish between deoxygenation caused by natural processes and deoxygenation caused by climate change.

Using the same model dataset, the scientists created maps of oxygen levels in the ocean, showing which waters were oxygen-rich and which were oxygen-poor. They found they could distinguish between oxygenation patterns caused by natural weather phenomena and the pattern caused by climate change.

The climate change pattern also became evident in the model runs around 2030, adding confidence to the conclusion that widespread deoxygenation due to climate change will become detectable around that time.

The maps could also be useful resources for deciding where to place instruments to monitor ocean oxygen levels in the future to get the best picture of climate change effects. Currently, ocean oxygen measurements are relatively sparse.

"We need comprehensive and sustained observations of what's going on in the oceans to compare with what we're learning from our models, and to understand the full effect of a changing climate," Long said.

Media Contact

Cheryl Dybas
cdybas@nsf.gov
703-292-7734

 @NSF

http://www.nsf.gov 

Cheryl Dybas | EurekAlert!

Further reports about: Atmosphere NCAR marine life oceans oxygen concentrations oxygen levels temperature

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>